GitHub十大精选RAG框架。
GitHub上十大RAG框架,代表了RAG技术的前沿。
1 Haystack by deepset-ai
GitHub项目链接:https://github.com/deepset-ai/haystack
Haystack是个强大而灵活的框架,专为构建问答和搜索系统设计。它支持多种文档存储和流行语言模型,架构可扩展,API易用。
Haystack的多功能性和详尽文档,是各类开发者实现RAG系统的理想选择。
2 RAGFlow by infiniflow
GitHub项目链接:https://github.com/infiniflow/ragflow
RAGFlow具备简洁高效的特性,提供预设组件和工作流程,简化了RAG应用的构建过程。
适合需要快速原型设计和部署RAG应用的开发者。
3 txtai by neuml
GitHub项目链接:https://github.com/neuml/txtai
txtai超越了传统RAG框架,是一个全面的AI数据平台,提供工具构建语义搜索和文档处理流程。
适合希望在单一框架内实现广泛AI功能的企业。
4 STORM by stanford-oval
GitHub项目链接:https://github.com/stanford-oval/storm
STORM由斯坦福大学研发,是专注于研究的RAG框架。它以其学术背景和对最新技术的专注而受到重视。
STORM的特点在于实现创新的RAG算法,提升检索准确性和效率,集成前沿语言模型,并提供全面的文档支持。
对于追求RAG技术深度的研究人员和开发者来说,STORM提供了一个坚实的学术支持平台。
5 LLM-App by pathwaycom
GitHub项目链接:https://github.com/pathwaycom/llm-app
LLM-App由pathwaycom提供,是一套构建动态RAG应用的模板和工具。它以实时数据同步和容器化部署为特色。
LLM-App的关键特性包括即开即用的Docker容器、动态数据源支持、集成流行LLM和向量数据库,以及为各种RAG用例提供的定制模板。
LLM-App因其对运营和实时能力的重视,是部署生产就绪RAG系统的组织的理想选择。
6 Cognita by truefoundry
GitHub项目链接:https://github.com/truefoundry/cognita
Cognita是truefoundry推出的RAG框架,专注于提供统一平台构建和部署AI应用。它以全面的方法和对MLOps原则的关注而值得考虑。
Cognita的核心特性包括端到端的RAG应用开发平台、集成流行ML框架和工具、内置监控和可观测性特性,以及支持模型版本控制和实验跟踪。
Cognita为希望简化整个ML生命周期管理的组织提供了全面的支持。
7 R2R by SciPhi-AI
GitHub项目链接:https://github.com/SciPhi-AI/r2r
R2R由SciPhi-AI开发,是专业的RAG框架,专注于通过迭代细化改进检索过程。它以其创新的检索方法而受到关注。
R2R的关键特性包括实现新颖的检索算法、支持多步骤检索过程、集成各种嵌入模型和向量存储,以及提供分析和可视化检索性能的工具。
R2R为有兴趣推动检索技术边界的开发者和研究人员提供了一套独特而强大的工具。
8 Neurite by satellitecomponent
GitHub项目链接:https://github.com/satellitecomponent/neurite
Neurite由satellitecomponent推出,是新兴的RAG框架,旨在简化构建AI驱动应用的过程。它以其对开发者体验和快速原型设计的关注而值得探索。
Neurite的特性包括直观的API、支持多种数据源和嵌入模型、内置缓存和优化机制,以及可扩展的架构用于自定义组件。
Neurite的简单性和灵活性使其成为希望快速实现RAG功能的开发者的有吸引力的选择。
9 FlashRAG by RUC-NLPIR
GitHub项目链接:https://github.com/RUC-NLPIR/FlashRAG
FlashRAG由中国人民大学自然语言处理与信息检索实验室开发,是一个轻量级和高效的RAG框架。它以其对性能和效率的关注而成为一个值得注意的竞争者。
FlashRAG的特性包括优化的检索算法、支持分布式处理和扩展、集成流行语言模型和向量存储,以及用于基准测试和性能分析的工具。
FlashRAG为速度和效率至关重要的应用提供了一套专门的工具和优化。
10 Canopy by pinecone-io
GitHub项目链接:https://github.com/pinecone-io/canopy
Canopy由Pinecone开发的RAG框架,利用Pinecone在高效向量搜索方面的专业知识,提供了一个强大且可扩展的RAG解决方案。
Canopy的特性包括与Pinecone向量数据库的紧密集成、支持流式和实时更新、高级查询处理和重新排名能力,以及管理和版本控制知识库的工具。
Canopy对可扩展性和与Pinecone生态系统的集成的关注使其成为已经使用或考虑使用Pinecone进行向量搜索需求的组织的绝佳选择。
结语
总的来说,RAG框架领域百花齐放,每个框架都有其独到之处。挑选框架时,要综合考虑项目的具体需求、定制化的灵活性、框架的可扩展性与性能、社区的规模与活跃度,以及文档和支持的完善度。精准选择,能够助你打造更智能、更具洞察力的AI应用。在AI技术日新月异的今天,紧跟RAG技术的最新趋势,对开发者和企业来说非常重要。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。