随着DeepSeek爆火,面试中也越来越高频出现,因此训练营也更新了DeepSeek系列技术的深入拆解。包括MLA、MTP、专家负载均衡、FP8混合精度训练,Dual-Pipe等关键技术,力求做到全网最硬核的解析~
本文对主流大模型并行训练方式进行了简单介绍,并分析了其通信量以及编排方式。
01 并行策略
目前主流的并行策略可以分为 5 种:
- DP 数据并行
- PP 流水线并行
- TP 张量并行
- SP 序列并行
- EP 专家并行
Efficient training of large language models on distributed infrastructures: a survey 中的 overview
02前提
03数据并行 (Data parallelism)
3.1 通信量
3.2 通信模式
Backward:Allreduce
3.3 流量编排
DP 通信次数较少,总通信量相对较低,且可以与反向计算 Overlap (ZeRO/FSDP 等实现方式),通常编排到 Spine/Inter-pod switch (clos 架构) 或 leaf switch (multi-rail 架构)。
04流水线并行(Pipeline parallelism)
对模型进行切分的一种方式,将模型按照 transformer layer 进行切分。
如 Meta LLaMa3 中 126 transformer 层,被切到 16 个 PP 组中,第一个和最后一个 PP 组中为 7 层(第一个 PP 要做 embedding/位置编码等,最后一个 PP 组需要做 loss 计算),其余 8 层。
采自 hkust 课程 PPT
4.1 通信量
4.2 通信模式
fwd/bwd:P2P
4.3 流量编排
PP 通信次数少,通信量低,且可以通过多级流水分 micro batch 的方式和前向计算 Overlap。
一般被编排到 spine switch (clos/muti-rail)。工业界实现中,相当 DP 流量,编排更内层。
05张量并行(Tensor parallelism)
Megatron 中 TP 的实现
对 MLP 进行切分,第一个 MLP A 纵切,第二个 MLP B 横切
对 Attention 中的多头进行切分,将不同的头切分到不同的 GPU 上
5.1 通信量
5.2 通信模式
fwd/bwd: Allreduce
5.3 流量编排
通信频繁,总通信量大,编排在 High bandwidth domain,比如单 Server 内 Nvlink。
06序列并行 (Sequence parallelism)
6.1 TP-SP Megatron
注意到在 TP 中,Layernorm 层和 Droupout 层没有被切分并行,因为其在 D 维度上存在依赖,而L维度上不存在依赖,故考虑将数据在 L 维度进行切分后并行,并行度 SP=TP。
该方式更像是一种 TP 的拓展实现,而不是传统意义上的拆分 L 维度来计算 attention。
Megatron 中 TP-sp 的实现
6.1.1 通信量
Megatron 中为了减少单 GPU 存储消耗,选择反向计算的时候重新计算完整输入而不是存,多引入 2 次 allgather。
USP: A Unified Sequence Parallelism Approach forLong Context Generative AI 中的通信量分析
6.1.2 通信模式
all-gather 和 reduce-scatter
6.1.3 流量编排
和 TP 一致,Server 内 Nvlink 优先,TP 组即 SP 组。
6.2 Ulysses Deepspeed
**总体思想:**每个 GPU 上全部 head 的部分 QKV —all2all→每个 GPU 上部分 head 的完整 QKV;多 GPU 分布式 attention 计算→每个 GPU 算一部分 head 的 attention。
比较抽象,all2all 发送过程
all2all 发回
6.2.1 通信量
QKVO 前向 4 次 all2all,dQ dK dV dO 反向 4 次 all2all。
6.2.2 通信模式
fwd+bwd:all2all (qkvo),Allreduce 同步梯度。
6.2.3 流量编排
通信次数多,单次流量小,all2all 需要高 bisection 带宽,尽量编排到 HBD,不够就 leaf/spine switch。
6.3 Context Parallelism Megatron
6.3.1 通信量
fwd+bwd 2(sp-1)次 P2P,每次传 kv/dk dv,通信量。
6.3.2 通信模式
P2P 和 Allreduce。
6.3.3 流量编排
通信次数多,单次流量中,最好编排到 HBD,不够就 leaf/spine switch。
07专家并行(Expert parallelism)
针对 MoE 模型训练的特有的并行方式,对模型进行切分。
6.4.1 通信量
假设 EP 组内负载均衡能够做到极致,token 均分到每一个 EP 组 rank。前后向分别 2 次 all2all。
EP 和 TP 一起使用时会存在冗余的通信,可以使用 Group-wise 的 all2all 优化方式,将 TP 组内的 all2all 省略,转化成 TP 组内的 all gather。
6.4.2 通信模式
fwd/bwd 2 次 all2all。
6.4.3 流量编排
前后向时每专家层 2 次,需要 all2all,要求 bisetion 带宽,但量 group-wise 后相对 TP/SP 少,无 SP 时最好能编排到 HBD,有 SP 时可以编排到 leaf/spine switch。
08总结
以华为 UB-mesh 论文中的数据为例子,该表的数据是来自于华为训练一个 2T 参数的 MoE 模型的流量统计(猜测此 2T 模型专家数较少,可能类似于 GPT4-2T 的模型,只有 16 专家,导致 EP 小,TP 大)。
我们根据此表可以得知华为的编排是:TP>SP>EP>PP>DP。
UB-Mesh 训练 MoE-2T 的流量分析
以上分析都是比较笼统且粗略的计算,具体模型还需具体分析,实现中对通信的优化/overlap 方式会导致通信量/编排存在变化。
比如 Deepseek v3 的 EP 实现中是 FP8 Dispatch + BF16 Combine,此时通信量计算不能一概而论。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~