最近收到很多小伙伴在催LangGraph系列
AI Agent能够执行自动化任务、回答用户查询、进行数据处理等,广泛应用于客户支持、智能推荐、内容生成等领域。
AI Agent的领域技术复杂性往往让初学者望而却步
无论是刚踏入AI领域的开发者
还是对Agent系统感到好奇
现在就通过使用LangGraph创建一个简单但功能齐全的来分解基础知识
今天分为两个部分!帮助你快速入门
第一部分:LangGraph的组成部分
第二部分:构建和执行你的第一个AI代理
构建 AI 代理的价值远不止于自动化某些任务
AI 代理的价值体现哪些方面
提高效率、增强用户体验、便捷的构建与部署…
一、LangGraph中图的主要组成部分
1.1节点
节点只是python函数接收图的状态作为首个参数
通过这个参数
节点可以了解Graph中的动态并更新状态,实现与Graph的交互。
每个节点的操作都基于对这一共享状态的处理和修改。
默认情况下,节点还会覆盖前置状态值
1.2边
可以将边视为顶点,将两个端点连接在一起
边只是两个节点之间的连接
1.2.1边它分为什么类型呢?
①普通边是指没有设置任何条件的边
②条件边是指仅在特定条件满足时才会被遍历的边
根据执行一系列逻辑判断和条件语句来,返回下一个的节点名称
通常使用if和else语句来实现,根据条件判断返回下一个要访问的节点
1.2.2额外知识点
①孤立节点在图论中,孤立节点是没有任何边与其他节点相连的节点/顶点,是完全与图中其他部分断开的顶点,度数为0
②状态基本上是我们在图形的不同节点和边之间传递的对象
状态通常是处理图时首先定义的关键要素
在构建的过程中,状态对象承载了必要的上下文信息,为各个组件之间的交互提高标准化数据格式
话不多说,现在开始!动手来!
一定要动起手来跑!
AI发展飞快!只有动手了,才知道里面会遇到什么问题,才能知道,底层原理是什么!
二、构建一个简单的Graph
构建Graph节点
首先,在构建图时,我们需要创建一些节点。
ok 暂时不考虑节点,我们首先需要思考图应该执行什么功能
将这些思考和构思转化为普通的Python函数
这些函数实际上就是图中的节点。
def node_01(state: State):` `print(f"node_01: {state['graph_msg']}")` `# 覆盖状态中graph_msg` `return{"graph_msg": state["graph_msg"] + "node_01"}``def node_02(state: State):` `print(f"node_02: {state['graph_msg']}")` `# 覆盖状态中graph_msg` `return {"graph_msg": state["graph_msg"] + "node_02"}``def node_03(state: State):` `print(f"node_03: {state['graph_msg']}")` `# 覆盖状态中graph_msg` `return{"graph_msg": state["graph_msg"] + "node_03"}
这里可以看到每个节点
每个节点都会修改图形状态
如果你在python中有段代码
你可能会收到警告
因为
我们没有定义图形的状态
但是!接下来,我们不这样做
2.1构建Graph状态
Graph的状态对象用于维护Graph中当前活动的短期记忆
并作为参数传递给每个节点。
在 LangGraph 中,我们利用TypedDict、Pydantic
和内置类来构建和管理这些状态对象。
为了保持实现的简单性和清晰度
我们将使用TypedDict来定义图形状态。
from typing import TypedDict``class State(TypedDict):` `graph_msg:str
现在我们的状态包含一个名为graph_msg的变量
用于储存Graph的消息
从上述节点的代码可以观察到如何在每个Graph节点中更新变量
2.2构建实际Graph
现在我们已经拥有了所需的组件!
首先!
我们传入Graph的状态
使用LangGraph中的类完成
我们将导入该类StateGraph
2.3添加所有的节点
将所有节点添加到Graph中
from langgraph.graph import StateGraph, END, START``# 定义Graph及其状态``builder = StateGraph(State)``# 添加所有节点``builder.add_node("node_01", node_01)``builder.add_node("node_02", node_02)``builder.add_node("node_03", node_03)
START是一个特殊的节点
将状态传递给Graph以初始化Graph代理
这标志着执行的起点
END是另一个指示终止点的特殊节点
2.4添加边
然后!继续向Graph添加边
from langgraph.graph import StateGraph, END, START`` ``# 定义Graph及其状态``builder = StateGraph(State)`` ``# 添加所有节点``builder.add_node("node_01", node_01)``builder.add_node("node_02",node_02)``builder.add_node("node_03",node_03)`` ``# 连接Graph的节点与边``builder.add_edge(START, "node_01") # 正常边``builder.add_conditional_edges("node_01", select_next_node) # 条件边``builder.add_edge("node_02", END) # 正常边``builder.add_edge("node_03", END) # 正常边
2.5编译Graph
设置完成后,就可以编译Graph
编译Graph会需要执行一些操作
①检查孤立节点是否存在
②关于Graph结构的其他检查
为了编译Graph,我们运行以下代码块
# 定义Graph及其状态``builder = StateGraph(State)`` ``# 添加所有节点``builder.add_node("node_01", node_01)``builder.add_node("node_02",node_02)``builder.add_node("node_03",node_03)`` ``# 连接Graph节点与边``builder.add_edge(START,"node_01")# 正常边` `builder.add_conditional_edges("node_01", select_next_node)``# 连接graph节点与边``builder.add_edge("node_02", END)#正常边` `builder.add_edge("node_03", END)#正常边` ` ``# 编译graph``graph = builder.compile()
2.6Graph可视化
注意!
要试一下代码正常运行
请确保从Python笔记本运行
使用Python代码可视创建的Graph
from IPython.display import Image, display``# 可视化Graph``display(Image(graph.get_graph().draw_mermaid_png()))
从上图中,可以看出条件边用虚线,正常边用实线表示
2.7Graph调用
完成了Graph的编译
一切就绪
现在我们继续调用Graph,需要注意
①编译后的Graph在LangChain中实现了可运行协议,这使得能够在LangChain中处理其他链一样处理Graph
②要调用一个Graph,需要传入他的状态
③每一个节点都将接受当前状态并覆盖它
④执行持续进行到graph终止点,直到终止节点
⑤ invoke方法异步运行Graph,在移动到下一个节点之前,会等待每个节点完成
⑥Graph在所有节点覆盖返回最终的状态
graph.invoke({"graph_msg":"Hello, "})
以上就是关键的代码
恭喜你迈出成为AI Agent构建者的第一步
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈