企业级应用揭秘:大模型技术的落地场景全解析,非常详细收藏我这一篇就够了!

AGI 新时代,企业如何用 AI 提升生产力,AI 如何和业务结合,AI 如何顺利落地。在跟上百家企业聊完后,这些应用场景你得知道了。

典型应用落地场景

大模型,我们说类似于一个斯坦福的大学生,拥有非常丰富的知识和理解能力。从大模型本身的具体能力看,主要分为(如下图):语言理解(意图理解)、文本总结、文本生成、Function Call 和写代码的能力

第一、对话助手落地场景

对话助手是最基础也是场景数量最多的应用形态,从数据获取的方式来看,主要有:

  • 基于知识库数据源,先召回,再大模型回答,即 RAG 模式。

  • 基于 API 查询,大模型的 FunctionCall,即对话过程中需要调用内外部系统获取信息。

实践过程中,也有许多场景会融合这两种能力。目前大部分企业的应用中,对话助手都仅对内提供服务,提升员工工作效率。实际上这类应用提供的价值更类似搜索,核心价值是高效信息传递,让用户能更快、更准的获取企业内部的非结构知识。同时,成熟度相对较高的应用基本都是即使答案错误也不会产生严重影响的场景,比如“产品使用手册问答”场景,对于大部分产品,并不会因为某个误操作导致严重后果,产品设计本身便会考虑误操作后的回退或者关键操作的重复确认。

第二、报告生成落地场景

和企业交流下来,才发现报告撰写需求如此旺盛,某些企业花在撰写报告上的人力和投入十分巨大,而报告又存在很大一部分“八股文”的套路。报告生成也自然成为了香饽饽场景。

企业场景主要以有固定模板的报告为主,并且报告基本都是几十页到几百页的长篇幅内容,涉及大量专业逻辑,想要通过一次大模型请求完成这种任务几乎是不可能的。为了生成复杂报告,可以采取分而治之的策略,即将总体问题分解为多个较简单的子问题,分别求解,并将这些子问题的解答整合到预定报告框架中。

在解决这些子问题时,并非全部适用大模型技术,因此需要结合多种技术手段,包括大型和小型模型、专家系统、专业业务系统等,以实现问题的全面解决。需要注意的是,此类应用同样不能保证生成结果的100%准确性,因此需要向用户提供易于追溯的生成逻辑和依据,以便用户对结果进行验证和审查。当然,即使一份报告内,不同章节内容的准确性要求也是不一样,用户可以专注于一些重点章节与重点指标和要素的结果确认。

第三、审核落地场景

审核类场景往往与生成类场景相伴相生,所以各类“报告生成”场景都会有对应的审核场景。

除了文档类数据需要审核,结构化业务数据也可以用大模型辅助进行审核。在和金融企业共建过程,比如:经营性贷款业务审核,这类场景主要借助大模型推理能力进行一些业务规则审核,如“抵押物是否属于房产”、“是否属于金融行业从业者”等等。从业务阶段来看,审核包含“事中”业务的审批、审核,也包含“事后”的审计、监督与质检。

从审核内容来看,包含专业业务逻辑审核、合规性和合法性审核、通用纠错(错别字、歧义等)。基于目前技术水平,审核同样只能是辅助性的,帮助审核者/提交者查漏补缺,比如:在提交审批前先进行自动审核,提交者可以判断是否需要修改,提高提交质量,降低打回概率。

第四、知识管理/非结构化数据治理落地场景

知识管理是企业数字化过程中,很大的一个课题。大模型正在重塑企业知识管理场景,从知识库构建,到知识的理解,大模型技术的语言能力大大降低了知识管理的落地门槛。

这类应用的本质是将非结构化数据向结构化/半结构化数据转换。原来的数据预处理和知识管理需要有非常专业的模型设计。现在,将大段相关文本给到大模型,大模型对语义的理解,可以直接将非结构化数据进行结构化提取和总结。不过,有一些对实时性、准确性要求很高的信息结构化场景,大模型方案不一定优于专用模型。

第五、数据分析落地场景

数据分析是各个行业都离不开的话题,通用数据分析辅助(技术上相关概念是 NL2SQL)。企业里针对我们对不同数据维度分析的诉求,通过 IT 研发的方式,成本无疑是巨大的。而引入大模型的编程能力,NL2SQL 能力,将大大降低对数据的分析成本。

然而目前基座模型在特定业务场景下效果差,特别是企业内数据库中都有至少几十张表的情况,所以目前离业务可用较远。这种场景下,模型微调是一种解决办法,而微调需要从零开始针对性准备大量微调数据(上千条)。当大模型能很好的获得结构化数据,并理解到表之间的业务逻辑关系,那么当领导随口咨询的一个指标,都能通过 SQL 进行计算,这无疑是一项值得投资的事。不过大模型数据分析+传统 BI 的方案,离真正的大规模普及还需要一些时日。

第六、企业超级助手落地场景

大部分企业内都至少有上百个系统,而这些系统的接口则更多。是否可以有一个超级助手,能接管企业内部的 API,实现按照自然语言,合理地触达各个系统。听着很魔幻,实际上,业界也认为 Agent 这种能力是大模型的未来。

长期来看,这种应用形态可能重构整个企业应用交互形态,对于各种长尾需求或不同企业之间的定制化需求,可以通过这种更自由的交互形式得到满足。

第七、代码落地场景

大模型的编码能力,是另一个经验我们的能力,一种是编程过程中的各种辅助,类似于写作辅助,另一种是程序开发自动化,类似于“报告生成”,直接生成一个完整的项目,然后由人进行调试验收。

在 C 端,相信大部分程序员或多或少使用 AI 辅助编码。我们能感受到大模型在0到1的功能上表现优异,但是无法很好地解决需求1-10的迭代过程。而这个也是我们企业中想要解决,和不断探索的地方。

既然大模型现在这么火热,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说大模型这对于我们来说就是一个机会,一个可以改变自身的机会,就看我们能不能抓住了。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值