当你在使用DeepSeek或其它AI时,也许可能遇到这样的问题:
❌你的知识迭代 VS 模型训练进度
“刚整理完行业前沿白皮书,却发现DeepSeek还卡在半年前的版本断层”
❌数据绞刑架 VS 硬盘保险箱
“把机密合同喂给AI?这和在推特公开裸奔有什么区别”
以上问题,可以通过使用DeepSeek构建一个私有知识库来解决。通过构建知识库:
✅ 本地化模型实时吞噬新文档,你的知识库永远比大模型快一个版本周期
✅ 数据从不出本地硬盘,不用担心数据系列
接下来,本文将介绍如何利用DeepSeek-R1模型的能力,借助Ollama与AnythingLLM两个工具,实现个人知识库的构建。
1.Ollama本地部署DeepSeek-R1模型
访问ollama官网,点击download。https://ollama.com/
根据电脑系统选择相应的版本。点击下载。若下载速度过慢,可关注根根AI公众号并回复“ollama”领取安装包。
打开下载的安装包,点击“Install” ,等待Ollama安装完成。
等待安装完成后,按win+r键,输入cmd调出命令行窗口。
输入
ollama --version
按下回车后出现版本号,即为安装成功。
我们选择推理能力更强的deepseek-r1模型进行本地部署。小编的笔记本显存为6G,因此选择最小的1.5b模型进行部署,如果显存更大的话,可以选择更大的模型。例如,选择7b模型能得到更好的回复,那么下面代码中的“1.5b”就要改为“7b”。
在命令行窗口中输入:
ollama run deepseek-r1:1.5b
按下回车,模型开始自动下载。
模型下载成功后,自动进入对话模式,我们可以在这里跟模型进行对话。
至此,恭喜你已经完成了deepseek-r1模型的本地部署。
2.AnythingLLM的下载与使用
(1)下载AnythingLLM
首先进入AnythingLLM的官网https://anythingllm.com/,点击“Download for desktop”。
根据电脑系统,选择合适的版本进行下载。注意,页面中提示由于最近的DDOS事件,可能导致下载链接不可用。若无法下载,可关注根根AI公众号,回复“AnythingLLM”领取资源。
打开下载好的安装包,选择“仅为我安装”与安装路径,软件将会自动安装。
安装过程中,可能会出现以下错误。已经成功安装Ollama后,此错误可不予理会。
(2)AnythingLLM的配置
进入AnythingLLM后,点击Get started,开始使用。
选择模型提供为“Ollama”,选择模型为“deepseek-r1:1.5b”或其它已经下载好的模型,点击下一步箭头。
后面可跳过邮箱注册步骤,点击下一步箭头,新建工作区,设置一个工作区名称,继续点击下一步。
首先点击左下角的小扳手,打开设置,找到 人工智能提供商 -> Embedder首选项,选择嵌入引擎提供商为Ollama,模型选择为deepseek-r1:1.5b,最后点击保存更改。点击左下角的返回键(原来小扳手的位置),返回首页。
接下来将会进入AnythingLLM主页,点击刚才设置的工作区,即可进入对话。
点击工作区中的上传标识,即可上传文件。
第一步,点击或拖拽上传文件。我们在这里上传了两篇公众号的文章、DeepSeek的两篇相关论文、一份变电站的相关书籍、一份关于Java的QA问答对。
第二步,选择想要上传到工作区的文件。我们在这里选择两篇跟Word接入DeepSeek相关的两篇公众号文章。在这里选择文件时要注意,由于本地部署的模型较小,检索能力没有那么强大,因此尽量选择与工作区内容相关的文档进行上传。内容不相似的文档可以新建多个工作区。
第三步,点击“Move to Workspace”将文件移动到工作区。
移动完成后,点击“Save and Embed”。若文件较大,此步骤会消耗较长的时间。
等待上传成功后,即可开始对话。
3.效果测试
(1)根据文档回答问题
告诉DeepSeek"总结资料,如何将DeepSeek接入Word",DeepSeek能够按照文档的内容进行总结,生成输出,但DeepSeek目前暂时还无法解析图片,因此只能根据文档内的文本内容做出回答。
(2)根据《伤寒杂病论》做出诊断
首先,新建一个工作区,将txt格式的《伤寒杂病论》作为资料上传。
向DeepSeek提问“我现在腹痛难忍,请告诉我如何用药”,DeepSeek按照伤寒杂病论中的内容,告诉我应该使用“柴胡桂枝汤”,并给出了具体的配方。
(3)数据分析
新建一个工作区,并将一份变电站的各个指标的变化数据上传,接下来需要DeepSeek来分析表内某一个时间段的数据。我们可以通过AI,直接对表格数据进行分析。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓