如何用一台电脑解锁DeepSeek R1数据限制并打造高效个人知识库

当你在使用DeepSeek或其它AI时,也许可能遇到这样的问题:

❌你的知识迭代 VS 模型训练进度

“刚整理完行业前沿白皮书,却发现DeepSeek还卡在半年前的版本断层”

❌数据绞刑架 VS 硬盘保险箱

“把机密合同喂给AI?这和在推特公开裸奔有什么区别”

以上问题,可以通过使用DeepSeek构建一个私有知识库来解决。通过构建知识库:

✅ 本地化模型实时吞噬新文档,你的知识库永远比大模型快一个版本周期

✅ 数据从不出本地硬盘,不用担心数据系列

接下来,本文将介绍如何利用DeepSeek-R1模型的能力,借助Ollama与AnythingLLM两个工具,实现个人知识库的构建。

1.Ollama本地部署DeepSeek-R1模型

访问ollama官网,点击download。https://ollama.com/

根据电脑系统选择相应的版本。点击下载。若下载速度过慢,可关注根根AI公众号并回复“ollama”领取安装包。

打开下载的安装包,点击“Install” ,等待Ollama安装完成。

等待安装完成后,按win+r键,输入cmd调出命令行窗口。

输入

ollama --version

按下回车后出现版本号,即为安装成功。

我们选择推理能力更强的deepseek-r1模型进行本地部署。小编的笔记本显存为6G,因此选择最小的1.5b模型进行部署,如果显存更大的话,可以选择更大的模型。例如,选择7b模型能得到更好的回复,那么下面代码中的“1.5b”就要改为“7b”。

在命令行窗口中输入:

ollama run deepseek-r1:1.5b

按下回车,模型开始自动下载。

模型下载成功后,自动进入对话模式,我们可以在这里跟模型进行对话。

至此,恭喜你已经完成了deepseek-r1模型的本地部署。

2.AnythingLLM的下载与使用

(1)下载AnythingLLM

首先进入AnythingLLM的官网https://anythingllm.com/,点击“Download for desktop”。

根据电脑系统,选择合适的版本进行下载。注意,页面中提示由于最近的DDOS事件,可能导致下载链接不可用。若无法下载,可关注根根AI公众号,回复“AnythingLLM”领取资源。

打开下载好的安装包,选择“仅为我安装”与安装路径,软件将会自动安装。

安装过程中,可能会出现以下错误。已经成功安装Ollama后,此错误可不予理会。

(2)AnythingLLM的配置

进入AnythingLLM后,点击Get started,开始使用。

选择模型提供为“Ollama”,选择模型为“deepseek-r1:1.5b”或其它已经下载好的模型,点击下一步箭头。

后面可跳过邮箱注册步骤,点击下一步箭头,新建工作区,设置一个工作区名称,继续点击下一步。

首先点击左下角的小扳手,打开设置,找到 人工智能提供商 -> Embedder首选项,选择嵌入引擎提供商为Ollama,模型选择为deepseek-r1:1.5b,最后点击保存更改。点击左下角的返回键(原来小扳手的位置),返回首页。

接下来将会进入AnythingLLM主页,点击刚才设置的工作区,即可进入对话。

点击工作区中的上传标识,即可上传文件。

第一步,点击或拖拽上传文件。我们在这里上传了两篇公众号的文章、DeepSeek的两篇相关论文、一份变电站的相关书籍、一份关于Java的QA问答对。

第二步,选择想要上传到工作区的文件。我们在这里选择两篇跟Word接入DeepSeek相关的两篇公众号文章。在这里选择文件时要注意,由于本地部署的模型较小,检索能力没有那么强大,因此尽量选择与工作区内容相关的文档进行上传。内容不相似的文档可以新建多个工作区。

第三步,点击“Move to Workspace”将文件移动到工作区。

移动完成后,点击“Save and Embed”。若文件较大,此步骤会消耗较长的时间。

等待上传成功后,即可开始对话。

3.效果测试

(1)根据文档回答问题

告诉DeepSeek"总结资料,如何将DeepSeek接入Word",DeepSeek能够按照文档的内容进行总结,生成输出,但DeepSeek目前暂时还无法解析图片,因此只能根据文档内的文本内容做出回答。

(2)根据《伤寒杂病论》做出诊断

首先,新建一个工作区,将txt格式的《伤寒杂病论》作为资料上传。

向DeepSeek提问“我现在腹痛难忍,请告诉我如何用药”,DeepSeek按照伤寒杂病论中的内容,告诉我应该使用“柴胡桂枝汤”,并给出了具体的配方。

(3)数据分析

新建一个工作区,并将一份变电站的各个指标的变化数据上传,接下来需要DeepSeek来分析表内某一个时间段的数据。我们可以通过AI,直接对表格数据进行分析。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 如何解除本地 DeepSeek 限制 对于希望调整或移除某些特定限制的用户来说,理解这些限制的本质以及它们是如何被实施的是至关重要的。通常情况下,DeepSeek限制可能涉及资源使用、发连接数或是 API 调用频率等方面。 #### 修改配置文件以适应更高需求 如果遇到性能瓶颈或者是默认设置不足以满足业务场景的需求时,可以考虑修改安装目录下的配置文件来提升系统的承载能力。这包括但不限于增加最大线程池大小、提高内存分配限额等措施[^2]。 ```bash # 假设 deepseek.yaml 是你的配置文件路径 vim /path/to/deepseek.yaml ``` 在该文件中寻找与性能调优有关的部分,按照官方文档指导进行适当调整。需要注意的是,在做出任何更改之前应当备份原始文件以防万一出现问题能够迅速恢复原状。 #### 开放网络访问权限 当涉及到局域网内多台设备间的协作工作流时,则需确保防火墙规则允许外部 IP 地址向运行着 DeepSeek 实例的服务端口发起请求;同时也要确认应用程序本身没有阻止来自非 localhost 请求的安全策略存在。 - **Linux/Unix 系统下** 可能会用到 `iptables` 或者更现代的 `nftables` 来管理进出站流量过滤规则; - 对于 Windows Server 用户而言,则应该查看高级安全Windows 防火墙选项卡内的入站规则列表里是否有针对所需开放端口号的相关条目。 #### 自定义模型参数 对于那些基于 Ollama 平台构建部署至私有环境中的大型语言模型(LLM),如 DeepSeek-R1:14b ,其内部运作机制往往依赖一系列预定义好的超参组合。为了更好地适配具体应用场景的要求,有时也需要深入研究相关文献资料进而微调这些数值[^3]。 不过值得注意的一点是,上述提到的所有操作都应在充分了解潜在风险的基础上谨慎执行——特别是当你打算对生产环境中正在使用的软件做改动的时候更是如此。此外,部分功能上的约束可能是出于法律合规性的考量而设定下来的,因此务必事先查阅清楚相关政策法规再行动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值