如何使用GPT-4o函数调用构建一个实时应用程序?

本教程介绍了如何使用OpenAI最新的LLM GPT-4o通过函数调用将实时数据引入LLM。

我们在LLM函数调用指南(详见https://thenewstack.io/a-comprehensive-guide-to-function-calling-in-llms/)中讨论了如何将实时数据引入聊天机器人和代理。现在,我们将通过将来自FlightAware.com的API与新的GPT-4o模型集成,进一步探究这个概念,以便实时跟踪航班状态。

FlightAware的AeroAPI是一个可靠的充分利用REST的API,提供按需访问航班跟踪和状态数据。它允许开发人员通过一个基于查询的简单系统,获取实时、历史或未来的航班信息。API支持基于航班标识符、飞机注册号或机场或运营商等位置的详细请求。它旨在以JSON格式提供精确、可操作的航空数据,支持整个航空业从航空公司到机场的运营需求。

在继续之前,注册FlightAware并获得API密钥,这对于调用REST API至关重要。免费的个人套餐足以完成本教程。

第1步:定义获取航班状态的函数

一旦您获得了API密钥,用Python创建以下函数来检索任何航班的状态。

import ast
	import json
	import random
	from datetime import datetime, timedelta
	import requests
	import pytz
	
	def get_flight_status(flight):
	    """Returns Flight Information"""
	
	    AEROAPI_BASE_URL = "https://aeroapi.flightaware.com/aeroapi"
	    AEROAPI_KEY="YOUR FLIGHTAWARE API KEY"
	    
	    def get_api_session():
	        session = requests.Session()
	        session.headers.update({"x-apikey": AEROAPI_KEY})
	        return session
	
	    def fetch_flight_data(flight_id, session):
	        if "flight_id=" in flight_id:
	            flight_id = flight_id.split("flight_id=")[1]    
	        
	        start_date = datetime.now().date().strftime('%Y-%m-%d')
	        end_date = (datetime.now().date() + timedelta(days=1)).strftime('%Y-%m-%d')
	        api_resource = f"/flights/{flight_id}?start={start_date}&end={end_date}"
	        response = session.get(f"{AEROAPI_BASE_URL}{api_resource}")
	        response.raise_for_status()
	        return response.json()['flights'][0]
	
	    def utc_to_local(utc_date_str, local_timezone_str):
	        utc_datetime = datetime.strptime(utc_date_str, '%Y-%m-%dT%H:%M:%SZ').replace(tzinfo=pytz.utc)
	        local_timezone = pytz.timezone(local_timezone_str)
	        local_datetime = utc_datetime.astimezone(local_timezone)
	        return local_datetime.strftime('%Y-%m-%d %H:%M:%S')    
	    
	    session = get_api_session()
	    flight_data = fetch_flight_data(flight, session)
	    
	    dep_key = 'estimated_out' if 'estimated_out' in flight_data and flight_data['estimated_out'] else \
	          'actual_out' if 'actual_out' in flight_data and flight_data['actual_out'] else \
	          'scheduled_out'
	    
	    arr_key = 'estimated_in' if 'estimated_in' in flight_data and flight_data['estimated_in'] else \
	          'actual_in' if 'actual_in' in flight_data and flight_data['actual_in'] else \
	          'scheduled_in'    
	    
	    flight_details = {
	        'flight':flight,
	        'source': flight_data['origin']['city'],
	        'destination': flight_data['destination']['city'],
	        'depart_time': utc_to_local(flight_data[dep_key], flight_data['origin']['timezone']),
	        'arrival_time': utc_to_local(flight_data[arr_key], flight_data['destination']['timezone']),
	        'status': flight_data['status']
	    }
	    return json.dumps(flight_details)
	
	flight_info = get_flight_status("EK524")
	print(flight_info)
	#'{"flight": "EK524", "source": "Dubai", "destination": "Hyderabad", "depart_time": "2024-05-23 22:00:00", "arrival_time": "2024-05-24 03:05:00", "status": "Scheduled"}'

虽然代码很简单,但还是不妨解释一下关键步骤。

get_flight_status函数接受一个航班参数(假设是航班标识符),并以JSON格式返回格式化的航班详细信息。它查询AeroAPI以根据给定的航班标识符获取航班数据,并确定关键细节的格式,比如出发地、目的地、离开时间、到达时间和状态。

不妨看看脚本的组件:

API凭据:

AEROAPI_BASE_URL是FlightAware AeroAPI的基础URL。

AEROAPI_KEY是用于身份验证的API密钥。

会话管理:

get_api_session:这个嵌套函数初始化请求。会话对象使用API密钥设置所需的报头,并返回会话对象。该会话将处理所有API请求。

数据获取:

fetch_flight_data:这个函数接受flight_id和session作为参数。它使用适当的日期过滤器构造端点URL,用于获取一天的数据,并发送GET请求以检索航班数据。该函数处理API响应,并提取相关的航班信息。

时间转换:

utc_to_local:根据所提供的时区字符串将UTC时间(来自API响应)转换为本地时间。这个函数可以帮助我们获得基于城市的到达和离开时间。

数据处理:

脚本根据估计或实际时间的可用性确定离开时间和到达时间的键,并返回到计划时间。然后,它构造一个含有格式化航班详细信息的字典。

上面的截图显示了我们从FlightAware API收到的从迪拜飞往海得拉巴的阿联酋航空EK524航班的响应信息。请注意,到达和离开时间是基于城市的当地时间。

我们的目的是将该函数与GPT-4 Omni集成,使其能够实时访问航班跟踪信息。

第2步:用GPT- 4o实现函数调用

不妨从导入OpenAI库并初始化它入手。

from openai import OpenAI
client = OpenAI()

这一行创建了OpenAI类的一个实例。这个实例(客户端)将用于与OpenAI API交互。

我们将定义一个名为tools的列表,含有一个字典,该字典指定了函数get_flight_status。该函数旨在用作OpenAI API上下文中的工具,描述参数和所需输入。

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_flight_status",
            "description": "Get status of a flight",
            "parameters": {
                "type": "object",
                "properties": {
                    "flight": {
                        "type": "string",
                        "description": "Flight number"
                    }
                },
                "required": ["flight"]
            }
        }
    }
]

繁重工作在下面的函数中进行,其中LLM检查提示以确定是否需要调用函数/工具,然后继续生成适当的响应。

def chatbot(prompt):
    # Step 1: send the conversation and available functions to the model
    messages = [{"role": "user", "content": prompt}]
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=messages,
        tools=tools,
        tool_choice="auto"
    )
    response_message = response.choices[0].message
    tool_calls = response_message.tool_calls
 
    # Step 2: check if the model wanted to call a function
    if tool_calls:
        available_functions = {
            "get_flight_status": get_flight_status,
        }  
        messages.append(response_message)  
        
        # Step 3: send the function response to the model
        for tool_call in tool_calls:
            function_name = tool_call.function.name
            function_to_call = available_functions[function_name]
            function_args = json.loads(tool_call.function.arguments)
            function_response = function_to_call(flight=function_args.get("flight"))
            messages.append(
                {
                    "tool_call_id": tool_call.id,
                    "role": "tool",
                    "name": function_name,
                    "content": function_response,
                }
            )  
        final_response = client.chat.completions.create(
            model="gpt-4o",
            messages=messages,
        )  
        return final_response

这个函数chatbot接受用户提示,并使用OpenAI API对其进行处理。它将提示和定义的工具发送到OpenAI模型并处理响应。

通过嵌入来自用户的提示并将其发送到OpenAI API(chat.completion .create)来创建消息。API使用指定的工具(如果适用)处理这些消息。

比如说,当我们发送提示“EK524的状态是什么?”,GPT- 4o需要调用工具列表中提供的函数,并返回以下响应:

注意,响应包括函数(get_flight_status)和参数(EK226)。

下一步检查是否调用了任何工具(即工具中的函数)。它使用提供的参数执行这些函数,将它们的输出集成到对话中,并将这些更新后的信息发回到OpenAI API以进行进一步处理。

# Step 2: check if the model wanted to call a function
    if tool_calls:
        available_functions = {
            "get_flight_status": get_flight_status,
        }  
        messages.append(response_message)  
        
        # Step 3: send the info for each function call and function response to the model
        for tool_call in tool_calls:
            function_name = tool_call.function.name
            function_to_call = available_functions[function_name]
            function_args = json.loads(tool_call.function.arguments)
            function_response = function_to_call(flight=function_args.get("flight"))
            messages.append(
                {
                    "tool_call_id": tool_call.id,
                    "role": "tool",
                    "name": function_name,
                    "content": function_response,
                }
            )

此时,messages列表包括原始提示、带有函数名和变量的初始响应以及函数的实际输出。下面的屏幕截图显示了含有所有要素的列表。

由于来自工具的响应附加到历史记录中,我们可以调用聊天完成端点,从LLM获得最终答案。

final_response = client.chat.completions.create(
            model="gpt-4o",
            messages=messages,
        )  
        return final_response

final_response对象有我们所寻找的答案:

将提示发送给函数chatbot将返回指定航班的实时状态。

下面是本教程的完整代码:

from openai import OpenAI

#Initialize the environment variable OPENAI_API_KEY with your api key
	client = OpenAI()
	
	
#Function is available at 
https://gist.github.com/janakiramm/2143b909626f5f01d64739e3fe90c9c8
	
	tools = [
	    {
	        "type": "function",
	        "function": {
	            "name": "get_flight_status",
	            "description": "Get status of a flight",
	            "parameters": {
	                "type": "object",
	                "properties": {
	                    "flight": {
	                        "type": "string",
	                        "description": "Flight number"
	                    }
	                },
	                "required": ["flight"]
	            }
	        }
	    }
	]
	
	
def chatbot(prompt):
	    # Step 1: send the conversation and available functions to the model
	    messages = [{"role": "user", "content": prompt}]
	    response = client.chat.completions.create(
	        model="gpt-4o",
	        messages=messages,
	        tools=tools,
	        tool_choice="auto"
	    )
	    response_message = response.choices[0].message
	    tool_calls = response_message.tool_calls
	
	
    # Step 2: check if the model wanted to call a function
	    if tool_calls:
	        available_functions = {
	            "get_flight_status": get_flight_status,
	        }  
	        messages.append(response_message)  
	        
	        # Step 3: send the info for each function call and function response to the model
	        for tool_call in tool_calls:
	            function_name = tool_call.function.name
	            function_to_call = available_functions[function_name]
	            function_args = json.loads(tool_call.function.arguments)
	            function_response = function_to_call(flight=function_args.get("flight"))
	            messages.append(
	                {
	                    "tool_call_id": tool_call.id,
	                    "role": "tool",
	                    "name": function_name,
	                    "content": function_response,
	                }
	            ) 
	        final_response = client.chat.completions.create(
	            model="gpt-4o",
	            messages=messages,
	        )  
	        return final_response
	
	
res=chatbot("What's the status of EK226?")
	print(res.choices[0].message.content)

我们在本教程中探讨了如何通过函数调用将实时数据引入LLM。在本系列的下一部分中,我们将把GPT-4o换成Gemini Pro,以探究相同的概念,但使用不同的模型。

### 使用 LangChain 和 LangChain-OpenAI 进行 Prompt | Model | JSONOutputParser 链式调用 GPT-4 的具体示例 LangChain 是一种用于构建大型语言模型 (LLM) 应用程序的框架,它允许开发者轻松集成不同的组件来创建复杂的流水线。以下是使用 `langchain` 和 `langchain-openai` 实现链式调用 GPT-4 并解析其输出为 JSON 的方法。 #### 安装依赖库 首先需要安装必要的 Python 包: ```bash pip install langchain openai ``` #### 示例代码实现 下面是一个完整的代码示例: ```python from langchain.prompts import PromptTemplate from langchain.llms import OpenAI from langchain.chains import LLMChain from langchain.output_parsers.json import parse_json_markdown # 设置 OpenAI API 密钥和模型名称 import os os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here" # 创建提示模板 prompt_template = """You are a helpful assistant. Given the following context, answer the question as truthfully as possible. Context: {context} Question: {question} Answer in JSON format with key 'answer'. Example: {"answer": "Your response here"}""" prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) # 初始化 GPT-4 模型 llm = OpenAI(model_name="gpt-4", temperature=0) # 构建链 chain = LLMChain(llm=llm, prompt=prompt) # 输入数据 input_data = { "context": "The capital of France is Paris.", "question": "What is the capital of France?" } # 执行链并获取响应 response = chain.run(input_data) # 解析 JSON 输出 parsed_response = parse_json_markdown(response) print(parsed_response) ``` 上述代码实现了以下功能: 1. **定义 Prompt Template**: 提供了一个结构化的输入模板,其中包含上下文 (`context`) 和问题 (`question`)。 2. **初始化 GPT-4 模型**: 使用 `OpenAI` 类指定模型名称为 `"gpt-4"`[^1]。 3. **构建 Chain**: 将 Prompt 和 LLM 绑定到一起形成一个可执行的工作流。 4. **运行 Chain**: 向工作流提供具体的输入数据,并接收来自 GPT-4 的响应。 5. **JSON 解析器**: 利用 `parse_json_markdown` 函数将返回的结果转换成标准的 Python 字典对象。 #### 关键点说明 - **Prompt Design**: 设计良好的提示对于获得预期结果至关重要。在此处,我们明确要求模型以特定格式(即 JSON)作答[^2]。 - **Error Handling**: 如果模型未能按照期望格式生成输出,则可能需要额外处理逻辑来捕获异常情况。 - **Performance Considerations**: 调整参数如温度 (`temperature`) 可影响生成质量与多样性;较低值倾向于更一致的回答而较高值则更具创造性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值