脑电波控制小车的研究与设计

摘 要

脑电波是一种记录大脑在活动的时候脑电信号产生变化的方法,脑电信号指的是活体大脑所携带的一种生物电信号,这种信号可以记录大脑神经元的活动信息。随着科学技术的不断进步以及相关领域的快速发展,对脑电信号的采取的技术变的越来越简单也更加准确。
Mindwave Mobile设备是Neurosky的一款产品,它能提取用户的脑波信息并进行量化分析,在此基础上结合嵌入式系统Arduino控制模块,HC-05蓝牙模块和脑-机接口技术,构建了MindWave - Arduino智能小车系统。项目通过脑电设备采取脑电信号,通过蓝牙模块发送数据至控制模块来控制小车的移动。
论文主要从课题背景和意义、硬件和软件的设计原理、测试和实现来介绍项目所采用的技术。脑波目前应用与各种领域,项目在MindWave Mobile脑信号采取设备的基础上进行二次开发,通过脑电信号数据来控制智能小车的状态,从而对大脑注意力进行训练,在课堂教育上也能够起到非常大的作用。

关键词:MindWave;智能小车;Arduino;HC-05蓝牙

开发环境及技术简介

1 开发环境
在这里插入图片描述

图 1 Arduino 开发环境界面图

硬件组成结构

1 脑机接口设备MindWave
在科学技术迅速发展的时代,智能产品、虚拟现实、可穿戴智能设备等高科技产品像是在一夜之间铺面而来。而在这个科技迅速发展的时代,有一家来自美国叫做NeuroSky的公司脱颖而出,这家公司专注于生物传感技术,并为其他公司提供解决方案,此时该公司把脑电波与智能产品、虚拟现实、可穿戴产品结为一体,通过意念来控制科技产品,将这些高科技产品的发展几乎推向巅峰。
NeuroSky能够为移动设备和可穿戴设备提供最具洞察力的生物识别技术,该公司可以检测心脏状况、血压、呼吸指数、注意力、冥想力、睡眠跟踪、疲劳等等指数。NeuroSky解决方案提供独特的身心健康和健康洞察,可以激励人们做出更好的生活方式选择。它凭借其在生物传感核心技术、传感器、算法上的优势,市场上大部分智能产品的数据检测功能都是由该公司来提供技术,同时也让智能可穿戴产品实现了从0到1的飞跃。除了受到相关行业的广泛认可外,NeuroSky曾获得包括TechAmerica美国技术奖、HiMSS(美国医疗信息与管理系统学会)创新大奖在内的诸多奖项,甚至被纳斯达克评为十年后可能取代Apple的企业之一,如图1是MindWave的部分应用图片。
在这里插入图片描述

图 1 MindWave的应用

HC-05蓝牙模块

图1和图2是HC-05蓝牙模块的前视图和后视图,、改蓝牙模块兼容主模式和从模式,只要通过设置它即可以主动去连接其他蓝牙设备也可以被其它设备连接。蓝牙模块之间数据传输非常方便,当两个具有蓝牙功能的设备配对成功之后,我们可以不必学习蓝牙内部是如何进行数据传输,而去直接使用蓝牙设备作为通信串口传输数据。当建立连接时,两设备共同使用一通道,即同一个串行端口,一个设备向该通道中发送数据,另外一个设备从该通道中接收数据。当蓝牙模块被设置为主模式时,它将会去主动连接其他蓝牙设备,为从模式时,该模块也只会被其他设备连接。需要留意一下,蓝牙模块在连接之前需要先对其进行AT属性设置,只有和要连接设备参数一致才会连接成功,否则无法连接。

在这里插入图片描述

图 1HC-05 Module 前视图

在这里插入图片描述

图 2HC-05 Module 后视图

蓝牙模块程序设计

下面我们介绍通过HC-05蓝牙模块的数据传输流程。
在这里插入图片描述

图 1 蓝牙与小车关系图

总结

该项目研究了经脑电波检测设备MindWave Moibile的二次开发的脑波控制的智能小车,项目使用蓝牙技术进行数据传输,经过串行通讯方式对采集到的脑电数据进行分析,并设计智能小车控制系统。详细阐述了基于脑波的智能小车控制系统研究过程。实现了既定目标。
本论文完成的主要工作有:
1.通过对MindWave Mobile设备的的学习和深入研究,设计脑电数据采集系统。
2.完成了基于Arduino Uno控制模块的智能小车的选材、搭建等工作。
3.实现了蓝牙传输数据信息的工作。
4.将MindWave Mobile应用到智能小车的控制,独立设计控制程序,实现对小车的行驶速度渐变的控制。
实验结果表明,根据脑电波注意力信号完全可以控制小车的行驶速度,也就是说可以使用外部设备进行大脑注意力的训练。这个项目在这里并没有结束,它可以做很多的扩展,比如我们可以利用两个脑电设备来进行注意力拔河比赛,这种对注意力的训练效果相对于项目中所说是更加明显的,在今后的学习过程中我希望可以从脑电设备中获取到更多的脑电信号用来开发一系列的相似的应用,为教育方面奉献自己的一份力量。

参考文献

[1]耿丽清, 赵丽, 崔世刚, 等. 基于脑电 alpha 波的便携式脑-机接口系统研究[J]. 系统仿真学报, 2008, 20(17): 4748-4750.
[2]王黎, 于涛, 等. 基于脑电α波的非线性参数人体疲劳状态判定[J]. 东北大学学报. 2005(12).
[3]吴小培, 冯焕清, 周荷琴, 李晓辉. 结合小波变换和独立分量分析的脑电特征提取[J]. 仪器仪表学报, 2004, 01: 120~124.
[4]孔繁昊. 脑电数据处理软件中关键算法的实现[D]. 电子科技大学, 2012.
[5]R.Scherer,A.Schlogl,F.Lee,H.Bischof,D.Grassi,and G.Pfurtscheller,”The self-paced Graz brain-computer interface: methods and applications”to appear in Computational Intelligence and Neuroscience,[J]. 2007.
[6]G.R.Muller-Putz,R.Scherer, G.Pfurtscheller,and R.Rupp,―Brain-computer interfaces for control of neuroprostheses:from synchronous to asynchronous mode of operation,‖Biomedizinische Technik.[J]. vol.51,no.2,pp. 57–63,2006.
[7]G.Pfurtscheller,R.Leeb,C.Keinrath,etal.Walking from thought, ‖Brain Research.[J]. vol.1071,no.1,pp.145–152,2006.
[8]李颖洁. 脑电信号分析方法及其应用 [M]. 科学出版社,2009.
[9]王小龙. 人际脑电波通讯实验首获成功[N].科技日报,2014,9,3.
[10]黄川. 脑电渡信号处理及其在教育中的应用研究 [D]. 武汉:华中师范大学, 2016
[11]程晨. Arduino开发实战指南AVR篇[M]. 机械工业出版社, 2012.
[12]杨刚. 电子系统设计与实践[M]. 电子工业出版社, 2009.
[13]侯俊杰. 深入浅出MFC(第2版)[M]. 华中科技大学出版社, 2001.
[14]NeuroSky. NeuroSky MRT简介[D].北京视友科技有限责任公司, 2011.
[15]NeuroSky.TGAM特点+技术参数.神念科技有限公司, 2011.
[16]王喜梅. 脑电波控制的智能轮椅控制系统设计[D]. 辽宁:大连交通大学,2013.
[17]肖婵. 基于脑电波的注意力训练研究[D]. 武汉:华中师范大学,2016.
[18]意念控制成真脑电波控制的Android机器人正式面世[EB/OL]. (2012-1l-14). http://www.shendu.corn/news/android-7954html.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值