回归预测|基于北方苍鹰优化卷积神经网络-长短期记忆神经网络-自注意力机制的数据回归预测Matlab程序NGO-CNN-LSTM-Attention 多特征输入单输出含基础模型

回归预测|基于北方苍鹰优化卷积神经网络-长短期记忆神经网络-自注意力机制的数据回归预测Matlab程序NGO-CNN-LSTM-Attention 多特征输入单输出含基础模型


前言

回归预测|基于北方苍鹰优化卷积神经网络-长短期记忆神经网络-自注意力机制的数据回归预测Matlab程序NGO-CNN-LSTM-Attention 多特征输入单输出含基础模型

一、NGO-CNN-LSTM-Attention模型

NGO-CNN-LSTM-Attention回归预测模型结合了多种现代机器学习技术,适用于复杂的时间序列预测任务。下面详细解释每个部分的原理和建模流程。

1. NGO(北方苍鹰智能优化算法)

NGO(Northern Golden Eagle Optimization) 是一种优化算法,受到苍鹰狩猎行为的启发。它属于群体智能优化算法的一种,用于求解复杂的优化问题。NGO 算法通过模拟苍鹰的猎食行为来优化模型参数,以提高模型的预测性能。

主要步骤

  • 初始化:随机生成初始种群(即一组解)。
  • 评估:计算每个解的适应度,即模型在特定任务上的表现。
  • 选择和更新:根据适应度选择表现较好的解,并通过模拟苍鹰的猎食行为更新种群。包括位置调整和方向变化。
  • 迭代:重复评估和更新步骤,直到满足停止条件(如最大迭代次数或收敛)。

2. CNN(卷积神经网络)

卷积神经网络(CNN) 擅长从数据中提取局部特征。对于时间序列数据,CNN 可以捕捉数据的局部模式,从而增强特征提取能力。

主要步骤

  • 卷积层:应用卷积核(过滤器)对输入数据进行卷积操作,以提取特征。
  • 池化层:通过池化操作(如最大池化或平均池化)降低特征图的维度,减小计算量,并保留重要信息。
  • 激活函数:如ReLU,增加模型的非线性能力。

3. LSTM(长短期记忆网络)

长短期记忆网络(LSTM) 是一种特殊的递归神经网络(RNN),用于捕捉长期依赖关系,克服了传统RNN在处理长序列时的梯度消失和爆炸问题。

主要步骤

  • 记忆单元:LSTM包含三个门(输入门、遗忘门和输出门),这些门控制信息的流入、保留和输出。
  • 门控机制:决定哪些信息应该保留,哪些信息应该忘记,以及如何输出最终结果。
  • 序列建模:LSTM处理序列数据,通过时间步长逐步更新其状态,捕捉序列中的时间依赖性。

4. Attention(注意力机制)

注意力机制 使模型能够聚焦于输入序列的某些重要部分,从而提高对关键特征的关注能力。它对长序列数据尤其有效。

主要步骤

  • 计算注意力权重:通过计算输入序列的每个位置的重要性得分来生成注意力权重。
  • 加权求和:根据计算的注意力权重对输入序列进行加权求和,得到加权后的表示。
  • 融合信息:将加权后的表示与其他层(如LSTM)的输出进行融合,以提升模型性能。

5. 综合建模流程

模型集成流程

  1. 数据准备:对时间序列数据进行预处理和特征工程。
  2. 特征提取
    • CNN 用于从输入数据中提取局部特征。
    • NGO 优化CNN和LSTM模型的参数。
  3. 时间序列建模
    • 将CNN提取的特征输入到 LSTM 中,捕捉长期依赖关系。
  4. 注意力机制应用
    • 在LSTM的输出上应用 Attention 机制,以进一步提高模型对关键特征的关注。
  5. 回归预测
    • 通过全连接层或其他回归层将最后的表示映射到预测值。
  6. 模型训练与优化
    • 使用NGO优化算法调整模型参数,提高预测性能。
  7. 模型评估与测试
    • 在测试集上评估模型性能,检查预测准确性和泛化能力。

总结

NGO-CNN-LSTM-Attention回归预测模型通过集成多种先进技术来解决复杂的时间序列预测问题。NGO优化算法负责参数优化,CNN提取局部特征,LSTM处理时间依赖性,Attention机制增强模型对关键信息的关注。这个综合模型在多种预测任务中表现出色,适用于具有复杂时序模式的数据集。

二、实验结果

NGO-CNN-LSTM-Attention结果
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
CNN-LSTM-Attention回归预测
在这里插入图片描述

CNN-LSTM回归预测
在这里插入图片描述

LSTM回归预测
在这里插入图片描述

三、核心代码


%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

t_train = double(t_train)';
t_test  = double(t_test)' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

%%  优化算法参数设置
fun = @fobj;                       % 目标函数
SearchAgents_no = 3;               % 种群数量
Max_iteration = 5;                 % 最大迭代次数
dim = 3;                           % 优化参数个数

%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([f_, 1, 1], "Name", "sequence")                   % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    convolution2dLayer([3, 1], best_jjh, "Name", "conv_1", "Padding", "same")   % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_1")                                                 % Relu 激活层
    convolution2dLayer([2, 1], best_jjh, "Name", "conv_2", "Padding", "same")   % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_2") ];                                              % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);         

四、代码获取

私信即可 79米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

  • 14
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
北方苍鹰NGO-BP)算法是一种结合了自组织映射(Self-Organizing Map,SOM)技术和改进的误差反向传播(Back Propagation,BP)神经网络技术的故障识别方法。其优化过程主要有以下几个步骤: 1. **预处理和特征提取**:首先对原始故障数据进行预处理,如归一化、降噪等,然后提取出关键特征,减少输入维度,提高算法效率。 2. **初始化NGO-BP网络**:SOM网络作为预训练层,用于发现数据集中的潜在结构。它通过竞争学习机制形成聚类,每个神经元代表一个数据空间中的模式。 3. **SOM训练**:利用原始数据对SOM网络进行训练,使得相邻节点之间的数据相似度高。这个阶段有助于将复杂的数据分布映射到低维空间。 4. **NGO-BP网络构建**:将训练好的SOM映射作为输入层,连接到一个传统的BP神经网络,作为输出层用于分类决策。SOM负责降低噪音和保持局部一致性,BP负责全局调整权重以优化分类精度。 5. **联合训练**:将两者结合起来,先通过SOM确定初始权值,再用BP进行微调。SOM部分固定不变,只更新BP网络的隐藏层权重,以适应从SOM得到的简化的输入特征。 6. **故障识别**:新的输入数据通过预训练的SOM层,再通过BP网络进行分类,输出对应故障类别。 流程总结就是:预处理数据 -> SOM网络初步划分 -> NGO-BP网络结构整合 -> 合成训练与优化 -> 新数据输入进行故障识别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值