目录
一、多模态大模型——以VisualGLM实现图文转换(入门级)
4. 存入向量数据库(以FAISS为例,常见向量数据库还有Milvus)
8. RAG流程封装(将提示词Prompt输入给文心大模型,获得输出结果)
前言
依托 aistudio 平台内容,章节一呈现了一个入门级demo(小白友好),以VisualGLM(多模型大模型)为例实现了图生文;章节二呈现了一个进阶版demo(适合有一定LLM基础的人群食用),以文心大模型(LLM+RAG)为例实现了金融知识库问答(参考aistudio上精品项目);章节三推荐了数个综合级、系统化的项目(适合从事/预从事 LLM/AIGC 岗的人群食用),把每个项目深挖吃透后,基本可以从事相关岗。
一、多模态大模型——以VisualGLM实现图文转换(入门级)
1. 安装相关依赖包
用git命令从github上下载visualglm-6b模型到本地,git PaddleMIX安装包、pip其它相关依赖包。
!git clone http://git.aistudio.baidu.com/aistudio/visualglm-6b.git
!git clone https://github.com/PaddlePaddle/PaddleMIX
!pip install soundfile librosa
2. 导入依赖库、导入model & processor
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["FLAGS_use_cuda_managed_memory"] = "true"
import requests
from PIL import Image
from PaddleMIX.paddlemix import VisualGLMForConditionalGeneration, VisualGLMProcessor
import warnings
warnings.filterwarnings('ignore')
# 设置visualglm-6b预训练模型的本地路径(PS:本地导入比直接云端下载速度会快很多)
pretrained_name_or_path = "aistudio/visualglm-6b"
model = VisualGLMForConditionalGeneration.from_pretrained(pretrained_name_or_path, from_aistudio=True,dtype="float32")
model.eval()
processor = VisualGLMProcessor.from_pretrained(pretrained_name_or_path,from_aistudio=True)
3. 导入图片链接
# 图片链接
# url = "https://paddlenlp.bj.bcebos.com/data/images/mugs.png"
url = 'https://i02piccdn.sogoucdn.com/5dd40dedd7107cc5'
image = Image.open(requests.get(url, stream=True).raw)
# 配置模型参数
generate_kwargs