突破瓶颈:如何优化 LLMs 的落地成本和延迟

编者按: LLMs 被视为 AI 领域的一个里程碑式的突破,但要将其应用于实际生产环境,并且还能用对、用好并非易事。模型的使用成本和响应延迟是目前将大语言模型(LLMs)应用于生产环境中的核心难题之一。
在这里插入图片描述

文章首先解析了导致高成本和高延迟的根源在于输入输出 tokens 的数量,而非任务本身的复杂度。接下来,作者逐一阐述了包括提示词拆分、模块化设计、与传统编程技术结合使用等多种优化策略。这些策略体现了作者对大模型应用本质的深刻理解,注重发挥 LLMs 在复杂推理方面的优势,同时将数学计算、数据聚合等工作外包给 SQL/Python 等更高效的工具。

本文贯穿了一种务实的方法论 ------ 理性看待 LLMs 技术,扬长避短,与其他技术工具形成合力,而非将其视为解决一切问题的"灵丹妙药"。这种观点和方法论对于企业更好地将 LLMs 技术应用于生产实践至关重要。

高成本和延迟是将大语言模型应用于生产环境中的主要障碍之一,二者均与提示词信息的体量(prompt size)紧密相连。

鉴于大语言模型(LLM)展现出极强的广泛适用性,不少人视其为解决各类问题的灵丹妙药。通过与诸如检索增强生成技术(RAG)及 API 调用等在内的工具整合,并配以精细的指导性提示词,LLM 时常能展现出逼近人类水平的工作能力。

然而,这种无所不包的应用策略,其潜在隐患在于可能会导致提示词的信息量迅速膨胀,直接引发高昂的使用成本以及较大的响应延迟,令 LLMs 在生产环境的实际部署面临重重困难。

针对高价值任务(如代码优化任务)使用 LLMs 时,成本这方面的考量或许会退居其次 ------ 一段平常半小时才能编写完成的代码现在等待半分钟即完成,花费一定的成本尚可接受。但转至 To C 领域,面对成千上万次的即时对话需求,成本控制与响应速度便成为决定项目成败的关键。

本文将分享为 Resider.pl 构建由 LLM 支持的房地产搜索助手 “Mieszko” 这一过程的心得。本文的重点是:如何跨越从吸引眼球的概念验证(impressive POC) 到在实操中有效运用 LLMs 的鸿沟。

01 Prompt is all you have
在构建 “Mieszko” 时,我非常倚重 LangChain 这一个出色的框架。该框架以一种有序且清晰的方式,将复杂的逻辑或组件抽象化,并配备了高效易用的提示词模板,仅需寥寥数行代码即可实现调用。

LangChain 的易用性或许会让我们不经意间忘却一个核心要点:不论我们的解决方案有多么繁琐,实质上所有组件都会汇总成一条长长的文本信息------“指令性提示词”------传递给 LLM。接下来将要展示的内容是一个概括性的示例说明,用于展示 LLM Agent 在接收指令性提示词或执行任务前,其输入提示词的基本结构和主要组成部分。

使用 LLM Agent 中的指令性提示词模板时所采用的基本结构

02 是什么影响了使用成本和响应延迟?
LLMs(大语言模型)是有史以来构建的最复杂的人工智能模型之一,但其响应延迟和使用成本主要取决于输入和输出处理的 tokens 数量,而非任务本身的难度。

撰写本文时,OpenAI 旗舰模型 GPT-4 Turbo 的定价公式大致如下:

响应延迟的相关计算方法则并不那么直接,但根据 “Mieszko” 的应用场景,可简单归结为以下这个公式:

从成本角度看,input tokens 通常是 LLMs 使用成本的"大头",其价格仅为 output tokens 的三分之一,但对于更复杂的任务,提示词长度会远超面向用户的 output tokens 长度。

然而,延迟主要受 output tokens 影响,处理 output tokens 的时间大约是 input tokens 的 200 倍。

在使用 LLM Agents 时,约 80% 的 tokens 来自 input tokens ,主要是初始的提示词和 Agents 推理过程中的消耗。这些 input tokens 是使用成本的关键组成部分,但对响应时间的影响有限。

03 监控和管理 tokens 的消耗
在构建任何 LLMs 应用程序时,除了初始提示词模板之外,至少还需要以下组件:

记忆库(每次与 LLMs 的交互(每次调用)中,都需要包含之前所有的对话消息或历史上下文。)

工具箱 (如供 LLMs 调用的 API),及其详细的指导性提示词

检索增强生成(RAG)系统及其产生的上下文

从技术上讲,我们可以添加任意数量的工具,但如果依赖最简单的 Agent&Tools 架构,可能系统的扩展性就会很差。对于每一种可用的工具,都需要在每次调用 Agents 时发送诸如 API 文档之类的详细说明。

在准备新系统组件时,需要考虑每次调用增加多少个 tokens 是值得的。 如果使用的是 OpenAI 的模型,可以快速评估新工具或额外的指导性提示词的"tokens 消耗"情况,方法如下:

04 如何在保持提示词精简的同时不牺牲准确性
初次接触时,大语言模型(LLMs)可能令人感到无所适从,但归根结底,重要的是要记住我们打交道的仍是软件。这意味着我们应当事先预料到会出现错误,管理和控制软件系统设计中的抽象层次和模块化程度,并寻找更高效的解决方案来处理子任务。

4.1 将大段提示词拆分成多层然后再调用
软件工程的关键原则之一是模块化和抽象化。试图用单个提示词来处理更复杂的问题,就如同编写难以维护的"意大利面条式"代码(Spaghetti code)(译者注:这个比喻来源于意大利面(spaghetti)缠绕不清、难分难解的形象。当一段代码缺乏清晰的结构、正确的模块划分和合理的逻辑顺序,而是充斥着大量的嵌套条件语句、无序的跳转、重复的代码块时,就被视为"意大利面式代码"。)一样低效。

在构建 Mieszko 时,性能显著提升的一个关键点是将提示词拆分为两个部分:

用于决策的 Agent (Decision Agent):对下一步可以采取的措施以及如何处理提示词输出的一般指导原则。

用于执行任务的 Agent / 对话型 LLMs 系统:含有针对具体步骤(如房源搜索、数据比较或房地产知识查询)的详细指导性提示词。

分层决策与执行架构图

分层决策和执行调用架构图,图片由原文作者提供

这种架构使得我们能够在每次调用时,首先选取需要使用的特定任务提示词,而无需随附沉重的、消耗大量 tokens 的执行指令(execution instructions),从而平均减少了超过 60% 的 tokens 使用量。

4.2 务必监控每次调用时的最终提示词
LLM 接收到的最终提示词(final prompt)可能与最初的提示词模板相去甚远。通过工具(tools)、记忆库(memory)、上下文(context)及 Agent 的内部推理来丰富提示词模板这一过程,可能会使提示词的规模激增数千个 tokens 。

此外,LLMs 有时会展现出如洛奇·巴尔博亚(Rocky Balboa)(译者注:洛奇·巴尔博亚(Rocky Balboa),美国电影《洛奇》系列的主角,业余拳击手出身,凭借自身的努力,登上拳坛最高峰。)般的韧性,即使面对存在错误和矛盾的提示词,也能"站起来"给出合理的答案。

通过仔细审查数十次 LLMs 的调用,并深入了解大语言模型(LLM)实际上接收到了什么信息,能为关键突破(key breakthroughs)和消除漏洞(bug elimination)提供宝贵洞见。我强烈推荐使用 LangSmith 来进行深入分析。

如果想要寻求最简便的方案,也可以启用 LangChain 中的调试功能,它将为我们提供每次调用时确切发送的提示词,以及大量有用信息,帮助我们更好地监控和优化提示词内容。

4.3 如只需几行代码即可处理的事,向 LLMs 提交前请三思
在使用 LLMs 时,最大的误区是忘记你仍然可以利用编程来解决问题。 以我为例,一些最大的性能提升,就是通过使用 Python 函数在 LLMs 调用的上下游处理一些极为简单的任务。

在使用 LangChain 时,这一点尤为有效,我们可以轻松地将 LLMs 的调用与传统的 Python 函数进行链式处理。下面是一个简化的示例,我曾用它来解决一个难题:即便指示 LLMs 保持回答与用户发送的消息相同的语言,LLMs 仍默认回复英文。

我们无需借助 LLMs 来检测目前的对话使用的是什么语言,利用 Google Translate API 或甚至是一个简单的 Python 库(如 langdetect ),可以更快、更准确地完成这项任务。一旦我们确定了输入语言,就可以明确地将其传入指导性提示词中,从而减少在 LLMs 的调用过程中需要处理的工作量。

4.4 在设计 Agent 的提示词时要精打细算,因为它们通常至少会被调用两次
集成了工具的 Agent 能够将 LLMs 的能力提升到新的层次,但同时它们也非常消耗 tokens(计算资源)。 下面的图表展示了 LLM Agent 针对 query 提供答案的一般逻辑流程。

如上图所示,Agent 通常至少需要调用 LLM 两次:第一次是为了规划如何使用工具,第二次则是解析这些工具的输出以便给出最终答案。这一特点意味着,我们在设计提示词时节省的每一个 token,实际上都会带来双倍的效益。

对于某些较为简单的任务,采用 Agent 的方式可能是"用牛刀杀鸡",而直接使用带有 Completion 的简单指导性提示词(译者注:模型接收到 instruction prompt 后的内容生成过程。)可能就能够达到相似的结果,且速度甚至还能快上一倍。以 Mieszko 项目为例,我们决定将大部分任务从 Multi-Agent 架构转变为基于特定任务的 Agent+Completion 模式。

4.5 将大语言模型和传统编程工具结合使用,发挥各自的优势(Use LLMs for reasoning but calculate and aggregate with SQL or Python)
相较于早期的 GPT-3.5,最新顶尖大语言模型已经有了很大的进步,那时它们在处理基础数学公式时都还会出错。现在,在诸如计算 segment averages (译者注:在一组数据中,将数据分成若干个段或区间,然后计算每个段内数据的平均值。)任务上,LLMs 已经能够轻松处理数百个数字。

但它们更擅长编写 Python 或 SQL,无需数以万亿计的模型参数,就能以 100% 的准确率执行复杂的数学运算。然而,向 LLMs 传递大量数字会消耗大量 tokens ,在最好的情况下,每 3 位数字都会转换为一个 token ;若数值庞大,单个数字就可能占用多个 tokens 。

想要更低成本、更高效率地分析数学运算,获得运算结果,窍门在于如何运用 LLMs 理解问题及手头数据,继而将之转译为 SQL 或 Python 这类更适合进行数学分析的编程语言。

实践中,可将编写的代码嵌入一个函数内执行,此函数负责连接数据源并仅将最终分析结果呈现给 LLM,供其直接理解、分析。

05 Summary
希望本文介绍的这些通用技巧,能够帮助各位读者更好地了解 LLMs 应用中使用成本和响应延迟的主要影响因素,以及如何优化它们。我希望尽可能多地分享我在开发基于 LLM 的生产级应用中学到的关键经验教训。在本系列接下来的文章中,我将从更具体、实践性更强的实践案例着手。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型实际应用案例分享

①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值