使用(傅里叶特征描述子)和(Hu不变矩)作为特征 通过训练手势识别数据集 建立基于matlab手势识别检测gui 识别图片及视频的手势判断 (1)

使用(傅里叶特征描述子)和(Hu不变矩)作为特征 通过训练手势识别数据集 建立基于matlab手势识别检测gui 识别图片及视频的手势判断


Matlab 手势识别 GUI 可以识别图片和视频中的手势
在这里插入图片描述

建立流程及实现目标:

  1. 图片或者实时视频
  2. 图像分割,进行手势区域的分割,得到分割结果的二值图
    (基于kmeans分割 + 基于肤色分割)
  3. 图像去噪,形态学处理,去除小对象
  4. 边缘检测,轮廓检测,凸包提取
    sobel ,prewitt,roberts,log,canny
  5. 进行图像特征的计算,与模板库中的图像特征进行对比,得到分类结果。
    在这里插入图片描述

使用 傅里叶特征描述子 及 Hu不变矩 作为特征,具有旋转平移不变性

构建一个基于 MATLAB 的手势识别 GUI 系统,可以按照以下步骤进行。这个系统将处理图片和实时视频中的手势,并使用傅里叶特征描述子和 Hu 不变矩作为图像特征进行分类。在这里插入图片描述
完善图像去噪的实现,并将其整合到整个手势识别系统中。以下是详细的 MATLAB 代码示例,包括图像去噪、边缘检测等步骤。

3.3 核心算法——图像去噪

函数定义:denoise.m
function [pic_cut] = denoise(pic)
    % 图像去噪

    % 使用形态学处理去除小区域
    IM = bwareaopen(pic, round(1/20 * numel(pic))); % 去除包含像素点少的白色区域
    
    % 定义结构元素(圆形)
    se = strel('disk', round(numel(IM) / 15000));
    
    % 开操作(腐蚀后膨胀)
    IM = imopen(IM, se);
    
    % 再次使用 bwareaopen 去除小区域
    IM = bwareaopen(IM, round(1/20 * numel(IM)));
    
    % 平滑滤波
    fspecial_filter = fspecial('average', [5, 5]);
    pic_cut = imfilter(IM, fspecial_filter);

end

4. 边缘检测与轮廓提取

函数定义:detectEdges.m
function edges = detectEdges(pic_cut, edgeType)
    % 边缘检测

    switch edgeType
        case 'Sobel'
            edges = edge(pic_cut, 'sobel');
        case 'Prewitt'
            edges = edge(pic_cut, 'prewitt');
        case 'Roberts'
            edges = edge(pic_cut, 'roberts');
        case 'LoG'
            edges = edge(pic_cut, 'log');
        case 'Canny'
            edges = edge(pic_cut, 'canny');
        otherwise
            error('Invalid edge detection type');
    end

    % 提取轮廓和凸包
    contours = bwboundaries(edges);
    convexHull = poly2mask(contours{
   1}(:, 2), contours{
   1}(:, 1), size(edges, 1), size(edges, 2));

    % 显示结果
    figure;
    subplot(1, 2, 1);
    imshow(edges);
    title('Edge Image');

    subplot(1, 2, 2);
    imshow(convexHull);
    title('Convex Hull');
end

5. 整合到 GUI 系统

GUI 主程序:main_gui.m
function main_gui()
    % 创建 GUI 界面
    fig = uifigure('Name', 'Gesture Recognition System');
    axRealTimeImage = uiaxes(fig, 'Position', [50, 50, 200, 200]);
    axDenoisedImage = uiaxes(fig, 'Position', [300, 50, 200, 200]);
    axEdgeImage = uiaxes(fig, 'Position', [550, 50, 200, 200]);

    % 按钮
    btnDenoise = uibutton(fig, 'push', 'Text', '去噪处理', 'Position', [50, 300, 100, 30], 'ButtonPushedFcn', @(btn,event) denoiseCallback(axRealTimeImage, axDenoisedImage))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值