DeepSeek V3 的新版本模型 DeepSeek-V3-0324 借鉴 DeepSeek-R1 中的强化学习技术,参数量只增加至 685B,推理能力却大幅提升,在数学、代码类任务上超过GPT-4.5!相较于第一代 V3,基准测试的准确率最高提升了近 20 % 20\% 20% 。新版本V3 还具有更强的中文写作和搜索能力。新模型采用 MIT License,允许用户利用模型输出、通过模型蒸馏等方式训练其他模型。
MindIE 支持 DeepSeek-V3-0324 部署推理,该模型已上线魔乐社区,欢迎广大开发者下载体验!
模型链接:https://modelers.cn/models/MindIE/DeepSeek-V3-0324
01 模型性能及特点
新版 V3 模型有以下几大亮点:
-
更强的推理能力:新版 V3 模型借鉴 DeepSeek-R1 模型训练过程中所使用的强化学习技术,大幅提高了在推理类任务上的表现水平,在数学、代码类相关评测集上取得了超过 GPT-4.5 的得分成绩。
-
更强的前端开发能力:在 HTML 等代码前端任务上,新版 V3 模型生成的代码可用性更高,视觉效果也更加美观、富有设计感。
-
中文写作升级:在中文写作任务方面,新版 V3 模型基于 R1 的写作水平进行了进一步优化,同时特别提升了中长篇文本创作的内容质量。
-
中文搜索能力优化:新版 V3 模型可以在联网搜索场景下,对于报告生成类指令输出内容更为详实准确、排版更加清晰美观的结果。
5.新版 V3 模型在工具调用、角色扮演、问答闲聊等方面也得到了一定幅度的能力提升。
接下来,手把手教你在魔乐社区下载和部署模型该模型
02 02 02 硬件要求
部署 DeepSeek-V3-0324 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800IA2( 8 ∗ 64 G 8*64\mathrm{G} 8∗64G )服务器,用 W8A8 量化权重进行推理则至少需要 2 台Atlas 800IA2 ( 8 ∗ 64 G \mathrm{8*64G} 8∗64G 。
03 下载权重
3.1 FP8 原始权重下载
HuggingFace:https://huggingface.co/deepseek-ai/DeepSeek-V3-0324
Modelers:https://modelers.cn/models/Modelers_Park/DeepSeek-V3-0324 (享国内加速下载)
目前提供模型权重下载脚本,支持 HuggingFace 以及 Modelers 来源的模型下载。用法如下:
- 鉴于 DeepSeek-V2、V3、R1、V3-0324 系列模型结构高度相似,模块化后组图代码差异较小。为提升代码复用率并降低冗余,四个模型的共享代码模块已统一整合至 DeepSeek-V2 文件夹中。
- 以下引用的 atb_models 路径在 DeepSeek-V2 路径下。
git clone https://gitee.com/ascend/ModelZoo-PyTorch.git
cd ModelZoo-PyTorch/MindIE/LLM/DeepSeek/DeepSeek-V2/
-
确认 atb_models/build/weights_url.yaml 文件中对应 repo_id,当前已默认配置模型官方认可的 DeepSeek-V3 下载地址,如您需要使用 DeepSeek-V3-0324 或者有其他信任来源的 repo_id,可自行修改。
-
执行下载脚本 atb_models/build/download_weights.py:
python3 atb_models/build/download_weights.py
参数名 | 含义 |
---|---|
hub | 可选,str类型参数,hub来源,支持HuggingFace, ModelScope, Modelers |
repo_id | 可选,str类型参数,仓库ID,默认从weight_url.yaml中读取 |
target_dir | 可选,str类型参数,默认放置在atb_models同级目录下 |
3.2 权重转换下载 (FP8 转 BF16)
NPU 侧权重转换,将 FP8 权重转换成 BF16。
注意:
- DeepSeek 官方没有针对 DeepSeek-V3-0324 提供新的权重转换脚本,所以复用 DeepSeek-V2 的权重转换脚本。
- 若用户使用上方脚本下载权重,则无需使用以下 git clone 命令,直接进入权重转换脚本目录。
git clone https://gitee.com/ascend/ModelZoo-PyTorch.git
cd ModelZoo-PyTorch/MindIE/LLM/DeepSeek/DeepSeek-V2/NPU_inference
python fp8_cast_bf16.py --input-fp8-hf-path {/path/to/DeepSeek-V3-0324} --output-bf16-hf-path {/path/to/DeepSeek-V3-0324-bf16}
目前npu 转换脚本不会自动复制 tokenizer 等文件,需要将原始权重的tokenizer.json, tokenizer_config.json 等文件复制到转换之后的路径下。
注意:
- /path/to/DeepSeek-V3-0324 表示 DeepSeek-V3-0324 原始权重路径,/path/to/DeepSeek-V3-0324-bf16 表示权重转换后的新权重路径。
- 由于模型权重较大,请确保您的磁盘有足够的空间放下所有权重,例如DeepSeek-V3 在转换前权重约为 640G 左右,在转换后权重约为 1.3T 左右。
- 推理作业时,也请确保您的设备有足够的空间加载模型权重,并为推理计算预留空间。
您也可以通过 HuggingFace 等开源社区直接下载 BF16 模型权重:
HuggingFace:https://huggingface.co/unsloth/DeepSeek-V3-0324-BF16/
Modelers: https://modelers.cn/models/Modelers Park/DeepSeek-V3-0324-BF16
3.3 W8A8 量化权重生成和下载 (BF16 转 INT8)
目前支持:生成模型 w8a8 混合量化权重,使用 histogram 量化方式 (MLA:w8a8
量化,MOE:w8a8 dynamic pertoken 量化)。
详情请参考 DeepSeek 模型量化方法介绍:
https://gitee.com/ascend/msit/tree/br_noncom_MindStudio_8.0.0_POC_20251231/msmodelslim/example/DeepSeek。
注意:DeepSeek-V3 模型权重较大,量化权重生成时间较久,请耐心等待;具体时间与校准数据集大小成正比,10 条数据大概需花费 3 小时。
昇腾原生量化 W8A8 权重下载(动态量化)
你也可以通过 Modelers 开源社区直接下载昇腾原生量化 W8A8 模型权重。链接如下。
Deepseek-V3-0324-W8A8:https://modelers.cn/models/Modelers_Park/DeepSeek-V3-0324-w8a8
04 推理前置准备
- 修改模型文件夹属组为 1001 -HwHiAiUser 属组(容器为 Root 权限可忽视),执行权限为 750:
chown -R 1001:1001 {/path-to-weights/DeepSeek-V3-0324} chmod -R 750 {/path-to-weights/DeepSeek-V3-0324}
- 修改权重目录下的 config.json 文件,将 model_type 更改为 deepseekv2(全小写且无空格)。
"model_type": "deepseekv2"
注意:在本仓实现中,DeepSeek-V3-0324 目前沿用 DeepSeekV2 代码框架。
- 检查机器网络情况。
# 1.检查物理链接
for i in {0..7}; do hccn_tool -i \$i -lldp -g grep Ifname; done
#2.检查链接情况
for i in {0..7}; do hccn_tool -i $i -link -g ; done
# 3.检查网络健康情况
for i in {0..7}; do hccn_tool -i $i -net_health -g ; done
# 4.查看侦测 ip 的配置是否正确
for i in {0..7}; do hccn_tool -i \$i -netdetect -g ; done
# 5.查看网关是否配置正确
for i in {0..7}; do hccn_tool -i \$i -gateway -g ; done
# 6.检查 NPU 底层tls 校验行为一致性,建议统一全部设置为 0,避免 hccl报错
for i in {0..7}; do hccn_tool -i \$i -tls -g ; done grep switch
# 7.NPU 底层 tls 校验行为置 0 操作,建议统一全部设置为 0,避免 hccl 报错
for i in {0..7};do hccn_tool -i \$i -tls -s enable 0;done
- 获取每张卡的 ip 地址
for i in {0..7};do hccn_tool -i \$i -ip -g; done
- 需要用户自行创建 rank_table_file.json,参考如下格式配置以下是一个双机用例,用户自行添加 ip,补全 device:
{
"server_count": "2",
"server_list": [
{
"device": [
{
"device_id": "0",
"device_ip": "...",
"rank_id": "0"
},
{
"device_id": "1",
"device_ip": "...",
"rank_id": "1"
},
...
{
"device_id": "7",
"device_ip": "...",
"rank_id": "7"
},
],
"server_id": "...",
"container_ip": "..."
},
{
"device": [
{
"device_id": "0",
"device_ip": "...",
"rank_id": "8"
},
{
"device_id": "1",
"device_ip": "...",
"rank_id": "9"
},
...
{
"device_id": "7",
"device_ip": "...",
"rank_id": "15"
},
],
"server_id": "...",
"container_ip": "..."
},
],
"status": "completed",
"version": "1.0"
}
参数名 | 说明 |
server_count | 总节点数 |
server_list | server_list 中第一个 server 为主节点 |
device_id | 当前卡的本机编号,取值范围[0,本机卡数) |
device_ip | 当前卡的ip地址,可通过hccn_tool命令获取 |
rank_id | 当前卡的全局编号,取值范围[0,总卡数) |
server_id | 当前节点的ip地址 |
container_ip | 容器ip地址(服务化部署时需要),若无特殊配置,则与 server_id相同 |
- rank_table_file.json 配置完成后,需要执行命令修改权限为 640
chmod -R 640 {rank_table_file.json路径}
05 加载镜像
需要使用 mindie:2.0.T3 及其后版本。
前往昇腾社区/开发资源或者魔乐社区/更多下载适配,下载镜像前需要申请权限,耐心等待权限申请通过后,根据指南下载对应镜像文件。
昇腾社区:
https://www.hiascend.com/developer/ascendhub/detail/af85b724a7e5469ebd7ea13c34
39d48f
魔乐社区:https://modelers.cn/images/MindIE/tags
- DeepSeek-V3 的镜像版本:2.0.T3-800I-A2-py311-openeuler24.03-lts
- 镜像加载后的名称:swr.cn-south-
1.myhuaweicloud.com/ascendhub/mindie:2.0.T3-800I-A2-py311-openeuler24.03-
lts
完成之后,请使用 docker images 命令确认查找具体镜像名称与标签。
各组件版本配套如下:
组件 | 版本 |
MindIE | 2.0.T3 |
CANN | 8.0.T63 |
Pytorch | 6.0.T700 |
MindStudio | Msit: br_noncom_MindStudio_8.0.0_POC_20251231分支 |
AscendHDK | 24.1.0 |
06 容器启动
1. 启动容器
执行以下命令启动容器(参考):
docker run -itd --privileged --name= {容器名称} --net=host \
--shm-size 500g \
--device=/dev/davinci0 \
--device=/dev/davinci1 \
--device=/dev/davinci2 \
--device=/dev/davinci3 \
--device=/dev/davinci4 \
--device=/dev/davinci5 \
--device=/dev/davinci6 \
--device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/hisi_hdc \
--device /dev/devmm_svm \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v /usr/local/Ascend/firmware:/usr/local/Ascend/firmware \
-v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \
-v /usr/local/sbin:/usr/local/sbin \
-v /etc/hccn.conf:/etc/hccn.conf \
-v {/权重路径:/权重路径} \
-v {/rank_table_file.json路径:/rank_table_file.json路径} \
{swr.cn-south-1.myhuaweicloud.com/ascendhub/mindie:1.0.0-XXX-800I-A2-arm64-py3.11(根据加载的镜像名称修改)} \
bash
2. 进入容器
执行以下命令进入容器(参考):
docker exec -it {容器名称} bash
3. 设置基础环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh source /usr/local/Ascend/nnal/atb/set_env.sh
ource /usr/local/Ascend/atb-models/set_env.sh
source /usr/local/Ascend/mindie/set_env.sh
4. 开启通信环境变量
export ATB_LLM_HCCL_ENABLE=1
export ATB_LLM_COMM_BACKEND="hccl"
export HCCL_CONNECT_TIMEOUT=7200 # 该环境变量需要配置为整数,取值范围[120,7200],单位s
双机:
export WORLD_SIZE=16
四机:
export WORLD_SIZE=32
export HCCL_EXEC_TIMEOUT=0
07 纯模型推理
【使用场景】使用相同输入长度和相同输出长度,构造多 Batch 去测试纯模型性能
7.1 精度测试
- 进入 modeltest 路径
cd /usr/local/Ascend/atb-models/tests/modeltest/
- 运行测试脚本
-
主副节点分别先清理残余进程:
pkill -9 -f 'mindie|python'
-
需在所有机器上同时执行:
bash run.sh pa_[data_type] [dataset] ([shots]) [batch_size] [model_name] ([is_chat_model]) [weight_dir] [rank_table_file] [world_size] [node_num] [rank_id_start] [master_address] ([parallel_params])
参数说明:
- data_type:为数据类型,根据权重目录下 config.json 的 data_type 选择 bf16或者 fp16,例如:pa_bf16。
- dataset:可选 full_BoolQ、full_CEval 等,相关数据集可至魔乐社区 MindIE 下载,(下载之前,需要申请加入组织,下载之后拷贝到/usr/local/Ascend/atb-models/tests/modeltest/路径下)CEval 与 MMLU 等数据集需要设置 shots(通常设为 5)。
- batch_size:为 batch 数。
- model_name:为 deepseekv2。
- is_chat_model:为是否支持对话模式,若传入此参数,则进入对话模式。
- weight_dir:为模型权重路径。
- rank_table_file:为“前置准备”中配置的 rank_table_file.json 路径。
- world_size:为总卡数。
- node_num:为当前节点编号,即 rank_table_file.json 的 server_list 中顺序确定。
- rank_id_start:为当前节点起始卡号,即 rank_table_file.json 中当前节点第一张卡的 rank_id,Atlas 800I-A2 双机场景下,主节点为 0,副节点为 8。
- master_address:为主节点 ip 地址,即 rank_table_file.json 的 server_list 中第一个节点的 ip。
- parallel_params: 接受一组输入,格式为
[dp,tp,moe_tp,moe_ep,pp,microbatch_size],如[8,1,8,-1,-1,-1]
测试脚本运行如下,以双机为例:
样例 -CEval 带 shot
主节点
bash run.sh pa_bf16 full_CEval 5 1 deepseekv2 {/path/to/weights/DeepSeek-V3-0324} {/path/to/xxx/ranktable.json} 16 2 0 {主节点IP}
# 0 代表从0号卡开始推理,之后的机器依次从8,16,24。
副节点
bash run.sh pa_bf16 full_CEval 5 1 deepseekv2 {/path/to/weights/DeepSeek-V3-0324} {/path/to/xxx/ranktable.json} 16 2 8 {主节点IP}
# 0 代表从0号卡开始推理,之后的机器依次从8,16,24。
样例 -GSM8K 不带 shot
主节点
bash run.sh pa_bf16 full_GSM8K 8 deepseekv2 {/path/to/weights/DeepSeek-V3-0324} {/path/to/xxx/ranktable.json} 16 2 0 {主节点IP}
# 0 代表从0号卡开始推理,之后的机器依次从8,16,24。
副节点
bash run.sh pa_bf16 full_GSM8K 8 deepseekv2 {/path/to/weights/DeepSeek-V3- 0324} {/path/to/xxx/ranktable.json} 16 2 8 {主节点 IP}
# 0 代表从 0 号卡开始推理,之后的机器依次从 8,16,24。
7.2 性能测试
-
进入 modeltest 路径:
cd /usr/local/Ascend/atb-models/tests/modeltest/
-
主副节点分别先清理残余进程:
pkill -9 -f 'mindie|python'
-
需在所有机器上同时执行:
bash run.sh pa_[data_type] performance [case_pair] [batch_size] ([prefill_batch_size]) [model_name] ([is_chat_model]) [weight_dir] [rank_table_file] [world_size] [node_num] [rank_id_start] [master_address] ([parallel_params])
参数说明:
- data_type:为数据类型,根据权重目录下 config.json 的 data_type 选择 bf1或者 fp16,例如:pa_bf16。
- case_pair:[最大输入长度,最大输出长度]。
- batch_size:为 batch 数。
- prefill_batch_size:为可选参数,设置后会固定 prefill 的 batch size。
- model_name:为 deepseekv2。
- is_chat_model:为是否支持对话模式,若传入此参数,则进入对话模式。
- weight_dir:为模型权重路径。
- rank_table_file:为“前置准备”中配置的 rank_table_file.json 路径。
- world_size:为总卡数。
- node_num:为当前节点编号,即 rank_table_file.json 的
server_list 中顺序确定。
rank_id_start:为当前节点起始卡号,即 rank_table_file.json 中当前节点第一张卡的 rank_id,Atlas 800I-A2 双机场景下,主节点为 0,副节点为 8。 - master_address:为主节点 ip 地址,即 rank_table_file.json 的 server_list 中第一个节点的 ip。
- parallel_params: 接受一组输入,格式为
[dp,tp,moe_tp,moe_ep,pp,microbatch_size],如[8,1,8,-1,-1,-1]
测试脚本运行如下,以双机为例:
主节点
bash run.sh pa_bf16 performance [[256,256]] 1 deepseekv2
{/path/to/weights/DeepSeek-V3-0324} {/path/to/xxx/ranktable.json} 16 2 0 {主节点IP}
# 0 代表从 0 号卡开始推理,之后的机器依次从 8,16,24。
副节点
bash run.sh pa_bf16 performance [[256,256]] 1 deepseekv2
{/path/to/weights/DeepSeek-V3-0324} {/path/to/xxx/ranktable.json} 16 2 8 {主节点IP}
# 0 代表从 0 号卡开始推理,之后的机器依次从 8,16,24。
08 服务化推理
【使用场景】对标真实客户上线场景,使用不同并发、不同发送频率、不同输入长度和输出长度分布,去测试服务化性能
1. 配置服务化环境变量
变量含义:expandable_segments-使能内存池扩展段功能,即虚拟内存特性。
export PYTORCH_NPU_ALLOC_CONF $=$ expandable_segments:True
服务化需要 rank_table_file.json 中配置 container_ip 字段。
所有机器的配置应该保持一致,除了环境变量的 MIES_CONTAINER_IP 为本机 ip 地址。
export MIES_CONTAINER_IP={容器ip地址}
export RANKTABLEFILE={rank_table_file.json路径}
2. 修改服务化参数
cd /usr/local/Ascend/mindie/latest/mindie-service/
vim conf/config.json
修改以下参数
"httpsEnabled" : false, # 如果网络环境不安全,不开启HTTPS通信,即“httpsEnabled”=“false”时,会存在较高的网络安全风险
...
"multiNodesInferEnabled" : true, # 开启多机推理
...
# 若不需要安全认证,则将以下两个参数设为false
"interCommTLSEnabled" : false,
"interNodeTLSEnabled" : false,
...
"npudeviceIds" : [[0,1,2,3,4,5,6,7]],
...
"modelName" : "DeepSeek-V3" # 不影响服务化拉起
"modelWeightPath" : "权重路径",
"worldSize":8,
Example:仅供参考,请根据实际情况修改
{
"Version" : "1.0.0",
"LogConfig" :
{
"logLevel" : "Info",
"logFileSize" : 20,
"logFileNum" : 20,
"logPath" : "logs/mindie-server.log"
},
"ServerConfig" :
{
"ipAddress" : "改成主节点IP",
"managementIpAddress" : "改成主节点IP",
"port" : 1025,
"managementPort" : 1026,
"metricsPort" : 1027,
"allowAllZeroIpListening" : false,
"maxLinkNum" : 1000, //如果是4机,建议300
"httpsEnabled" : false,
"fullTextEnabled" : false,
"tlsCaPath" : "security/ca/",
"tlsCaFile" : ["ca.pem"],
"tlsCert" : "security/certs/server.pem",
"tlsPk" : "security/keys/server.key.pem",
"tlsPkPwd" : "security/pass/key_pwd.txt",
"tlsCrlPath" : "security/certs/",
"tlsCrlFiles" : ["server_crl.pem"],
"managementTlsCaFile" : ["management_ca.pem"],
"managementTlsCert" : "security/certs/management/server.pem",
"managementTlsPk" : "security/keys/management/server.key.pem",
"managementTlsPkPwd" : "security/pass/management/key_pwd.txt",
"managementTlsCrlPath" : "security/management/certs/",
"managementTlsCrlFiles" : ["server_crl.pem"],
"kmcKsfMaster" : "tools/pmt/master/ksfa",
"kmcKsfStandby" : "tools/pmt/standby/ksfb",
"inferMode" : "standard",
"interCommTLSEnabled" : false,
"interCommPort" : 1121,
"interCommTlsCaPath" : "security/grpc/ca/",
"interCommTlsCaFiles" : ["ca.pem"],
"interCommTlsCert" : "security/grpc/certs/server.pem",
"interCommPk" : "security/grpc/keys/server.key.pem",
"interCommPkPwd" : "security/grpc/pass/key_pwd.txt",
"interCommTlsCrlPath" : "security/grpc/certs/",
"interCommTlsCrlFiles" : ["server_crl.pem"],
"openAiSupport" : "vllm"
},
"BackendConfig" : {
"backendName" : "mindieservice_llm_engine",
"modelInstanceNumber" : 1,
"npuDeviceIds" : [[0,1,2,3,4,5,6,7]],
"tokenizerProcessNumber" : 8,
"multiNodesInferEnabled" : true,
"multiNodesInferPort" : 1120,
"interNodeTLSEnabled" : false,
"interNodeTlsCaPath" : "security/grpc/ca/",
"interNodeTlsCaFiles" : ["ca.pem"],
"interNodeTlsCert" : "security/grpc/certs/server.pem",
"interNodeTlsPk" : "security/grpc/keys/server.key.pem",
"interNodeTlsPkPwd" : "security/grpc/pass/mindie_server_key_pwd.txt",
"interNodeTlsCrlPath" : "security/grpc/certs/",
"interNodeTlsCrlFiles" : ["server_crl.pem"],
"interNodeKmcKsfMaster" : "tools/pmt/master/ksfa",
"interNodeKmcKsfStandby" : "tools/pmt/standby/ksfb",
"ModelDeployConfig" :
{
"maxSeqLen" : 10000,
"maxInputTokenLen" : 2048,
"truncation" : true,
"ModelConfig" : [
{
"modelInstanceType" : "Standard",
"modelName" : "DeepSeek-V3",
"modelWeightPath" : "/home/data/dsv3_base_step178000",
"worldSize" : 8,
"cpuMemSize" : 5,
"npuMemSize" : -1,
"backendType" : "atb",
"trustRemoteCode" : false
}
]
},
"ScheduleConfig" :
{
"templateType" : "Standard",
"templateName" : "Standard_LLM",
"cacheBlockSize" : 128,
"maxPrefillBatchSize" : 8,
"maxPrefillTokens" : 2048,
"prefillTimeMsPerReq" : 150,
"prefillPolicyType" : 0,
"decodeTimeMsPerReq" : 50,
"decodePolicyType" : 0,
"maxBatchSize" : 8,
"maxIterTimes" : 1024,
"maxPreemptCount" : 0,
"supportSelectBatch" : false,
"maxQueueDelayMicroseconds" : 5000
}
}
}
3. 拉起服务化
# 以下命令需在所有机器上同时执行
# 解决权重加载过慢问题
export OMP_NUM_THREADS=1
# 设置显存比
export NPU_MEMORY_FRACTION=0.95
# 拉起服务化
cd /usr/local/Ascend/mindie/latest/mindie-service/
./bin/mindieservice_daemon
执行命令后,首先会打印本次启动所用的所有参数,然后直到出现以下输出:
Daemon start success!
则认为服务成功启动。
4. 另起客户端
进入相同容器,向服务端发送请求。
更多信息可参考官网信息:MindIE Service
https://www.hiascend.com/document/detail/zh/mindie/100/mindieservice/servicedev/mindie_service0285.html
精度化测试样例
需要开启确定性计算环境变量。
export LCCL_DETERMINISTIC=1
export HCCL_DETERMINISTIC=true
export ATB_MATMUL_SHUFFLE_K_ENABLE=0
- 并发数需设置为 1,确保模型推理时是 1batch 输入,这样才可以和纯模型比对精度。
- 使用 MMLU 比对精度时,MaxOutputLen 应该设为 20,MindIE Server 的config.json 文件中 maxSeqLen 需要设置为 3600,该数据集中有约为 1.4w 条数据,推理耗时会比较长。
benchmark \
--DatasetPath "/数据集路径/MMLU" \
--DatasetType mmlu \
--ModelName DeepSeek-V3 \
--ModelPath "/模型权重路径/DeepSeek-V3-0324" \
--TestType client \
--Http https://{ipAddress}:{port} \
--ManagementHttp https://{managementIpAddress}:{managementPort} \
--Concurrency 1 \
--MaxOutputLen 20 \
--TaskKind stream \
--Tokenizer True \
--TestAccuracy True
ModelName,ModelPath 需要与 mindie-service 里的 config.json 里的一致,master_ip设置为主节点机器的 ip。样例仅供参考,请根据实际情况调整参数。
更多常见问题和解答,请参考:https://modelers.cn/models/MindIE/DeepSeek-V3-0324/blob/main/README.md
欢迎体验
欢迎大家下载体验 MindIE 版 DeepSeek-V3-0324,也欢迎广大开发者在模型评论区留言交流!