✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
随着电动汽车的快速发展,充电负荷对电网的冲击日益显现,尤其是在高峰时段容易造成电网负荷过高,引发电网安全问题。峰谷分时电价策略是一种有效引导电动汽车充电负荷的措施,可以将充电需求转移到谷电时段,缓解电网压力。本文基于多目标优化遗传算法NSGAII,研究了峰谷分时电价引导下的电动汽车充电负荷优化问题。该算法综合考虑了用户充电成本最小化、充电时间最小化以及电网负荷平抑三个目标,通过对充电时间、充电功率进行优化,实现了电动汽车充电负荷的有效管理。本文还给出了Matlab代码实现,验证了算法的有效性。
关键词:电动汽车,充电负荷,峰谷分时电价,多目标优化,遗传算法,NSGAII,Matlab
1. 引言
近年来,随着环境污染和能源短缺问题的日益突出,电动汽车作为一种新能源交通工具,得到了快速发展。电动汽车的普及不仅减少了燃油车尾气排放,同时也为智能电网的发展提供了新的机遇。然而,大量电动汽车的涌入也带来了新的挑战,其中最突出的是充电负荷对电网的影响。
电动汽车充电负荷具有以下特点:
-
随机性: 充电时间、充电功率、充电位置等因素都具有随机性。
-
集中性: 充电集中在特定时间段和特定地点,容易造成电网负荷过高。
-
可控性: 电动汽车充电可以根据需求进行调整,具有一定的可控性。
为了解决电动汽车充电负荷带来的挑战,峰谷分时电价策略应运而生。该策略通过设置不同时段的电价,引导用户在谷电时段进行充电,降低充电成本,同时有效削峰填谷,缓解电网负荷压力。
然而,单纯的峰谷分时电价策略并不能完全解决电动汽车充电负荷优化问题。用户在充电时需要综合考虑充电成本、充电时间以及充电安全性等因素。因此,需要更有效的优化算法来解决这一问题。
2. 研究方法
本文采用多目标优化遗传算法NSGAII来解决峰谷分时电价引导下的电动汽车充电负荷优化问题。该算法可以同时优化多个目标,并找到一组 Pareto最优解,为用户提供多种可行方案。
2.1 问题描述
假设有N辆电动汽车需要充电,每个电动汽车的充电需求包括:
-
电池容量(SOC):表示电动汽车电池的剩余电量。
-
充电功率:表示电动汽车允许的最大充电功率。
-
到达时间:表示电动汽车到达充电站的时间。
-
离开时间:表示电动汽车离开充电站的时间。
电网提供峰谷分时电价,具体价格如下表所示:
时段 | 电价 |
---|---|
峰电 | 1.2元/度 |
谷电 | 0.8元/度 |
充电负荷优化问题旨在找到一个最优的充电方案,满足以下目标:
-
充电成本最小化:尽量在谷电时段进行充电,降低充电成本。
-
充电时间最小化:尽量缩短充电时间,提高用户体验。
-
电网负荷平抑:尽量将充电需求分散到不同的时间段,降低电网负荷高峰。
2.2 NSGAII算法
NSGAII算法是一种基于非支配排序的遗传算法,它能够有效地解决多目标优化问题。该算法的主要步骤如下:
-
种群初始化: 随机生成初始种群,每个个体代表一个充电方案。
-
非支配排序: 根据目标函数值将个体进行非支配排序,并将同一等级的个体进行拥挤距离排序。
-
遗传操作: 选择、交叉、变异等遗传操作,生成新的个体。
-
种群更新: 将父代和子代种群合并,并根据非支配排序和拥挤距离排序,选择下一代种群。
-
重复步骤2-4, 直到满足终止条件。
2.3 目标函数
本文定义了三个目标函数:
-
充电成本最小化:
f1 = Σ(P_i * T_i * C_i)
其中,P_i表示第i辆电动汽车的充电功率,T_i表示第i辆电动汽车的充电时间,C_i表示充电时间段对应的电价。
-
充电时间最小化:
f2 = Σ(T_i)
-
电网负荷平抑:
f3 = Σ(P_i * H(T_i - T_i'))
其中,H(T_i - T_i')表示在时间段T_i - T_i'内的充电功率总和,T_i'表示第i辆电动汽车到达充电站的时间。
3. Matlab代码实现
本文使用Matlab软件实现了基于NSGAII的电动汽车充电负荷优化算法。代码主要包括以下几个部分:
3.1 数据初始化
-
定义电动汽车数量、电池容量、充电功率、到达时间、离开时间等参数。
-
定义峰谷分时电价。
3.2 NSGAII算法实现
-
初始化种群。
-
定义目标函数。
-
实现非支配排序和拥挤距离排序。
-
实现遗传操作,包括选择、交叉、变异。
-
循环执行遗传操作,更新种群。
3.3 结果分析
-
输出Pareto最优解,并根据不同的目标函数值选择合适的充电方案。
-
分析不同方案的充电成本、充电时间以及电网负荷情况。
4. 实验结果与分析
本文对不同数量的电动汽车进行实验,模拟峰谷分时电价引导下的充电负荷优化问题。实验结果表明,NSGAII算法能够有效地找到一组 Pareto最优解,为用户提供多种可行的充电方案。
-
充电成本降低: NSGAII算法能够有效地将充电需求转移到谷电时段,降低用户的充电成本。
-
充电时间缩短: NSGAII算法能够根据用户需求调整充电时间,尽可能缩短充电时间。
-
电网负荷平抑: NSGAII算法能够有效地将充电负荷分散到不同的时间段,降低电网负荷高峰。
5. 结论
本文基于多目标优化遗传算法NSGAII,研究了峰谷分时电价引导下的电动汽车充电负荷优化问题。实验结果表明,该算法能够有效地解决该问题,为用户提供多种可行的充电方案,同时有效地降低充电成本、缩短充电时间以及平抑电网负荷。
未来研究方向:
-
考虑更复杂的充电场景,例如不同充电站的电价、不同充电桩的功率限制等。
-
考虑用户行为的影响,例如用户对充电成本、充电时间以及充电位置的偏好等。
-
将该算法应用到实际的充电管理系统中,进行更深入的验证和优化。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类