不过如果要实现花费的时间会有点多,只能说是一个小创意,比起实现这个智能问答系统,我们还可以在B站学习别人的教程,尝试将Deepseek-R1为调成空气质量大模型智能问答系统。
一、方案名称
《本草智答:基于知识增强的中医药大模型智能问答系统》
-
对标往届:参考2023年获奖作品《法律通》(法律问答)和《非遗百晓生》(文化问答),但聚焦中医药垂直领域。
技术架构设计
graph LR
A[用户提问] --> B(Vue前端)
B -->|REST API| C[Flask后端]
C --> D[大模型服务]
D --> D1[中医微调LLM]
D --> D2[知识图谱检索]
D --> D3[答案生成]
C --> E[MySQL]
E --> E1[中医药知识库]
E --> E2[政策文件库]
E --> E3[用户日志]
中医药智能问答平台功能详述
一、核心功能模块
1. 智能问答中枢
-
功能描述:
用户输入自然语言问题,系统通过微调的大模型生成回答,并关联中医药典籍、现代研究及政策文件。 -
技术实现:
-
输入处理:
-
支持 文本输入、语音输入(Web Speech API)
-
实体识别(HanLP)提取药材、症状等关键词
-
-
知识增强:
-
从MySQL知识库检索相关条文(如《本草纲目》原文)作为上下文
-
-
回答生成:
-
微调后的ChatGLM3-6B生成带文献引用的回答
-
-
政策标记:
-
自动检测回答中的政策关键词(如"创新""传承"),显示角标提示
-
-
-
交互示例:
用户问:"附子如何炮制才能降低毒性?"
系统答:"根据《本草纲目·草部》记载,附子需经过浸漂、煮制等工序[1]。现代工艺推荐九蒸九晒法(乡村振兴重点推广技术[政策])..."
2. 知识溯源系统
-
功能描述:
为每个回答提供可追溯的知识来源,增强学术可信度。 -
技术细节:
-
文献标注:
-
点击角标[1]弹出古籍扫描件(PDF.js渲染)及现代研究摘要
-
-
图谱展示:
-
显示该问题涉及的药材-功效-病症关系网络(AntV G6绘制)
-
-
溯源路径:
-
graph LR
A[附子] -->|炮制方法| B[《本草纲目》]
A -->|现代研究| C[《中药炮制学》2020版]
B -->|关联政策| D[《中医药振兴发展实施方案》]
3. 政策关联分析
-
功能描述:
将用户问答与二十大报告、中央一号文件等政策精神关联。 -
实现方式:
-
关键词云图:
-
ECharts动态展示问答记录中的高频政策词汇
-
-
案例匹配:
-
当问题涉及"乡村""药材种植"时,自动显示地方振兴案例(如甘肃当归种植基地)
-
-
政策仪表盘:
-
<template>
<div class="policy-dashboard">
<el-progress :percentage="matchPercent" :format="formatPolicy"/>
<div v-for="item in policyList" :key="item.id">
<h4>{{ item.title }}</h4>
<el-tag v-for="kw in item.keywords" :key="kw">{{ kw }}</el-tag>
</div>
</div>
</template>
4. 用户共创社区
-
功能描述:
允许用户补充知识库内容,构建开放协作生态。 -
核心流程:
-
用户点击"补充知识"按钮提交新内容
-
管理员后台审核(Element UI表格+批量操作)
-
通过后自动更新知识图谱
-
-
数据结构:
{
"user_id": "U1001",
"content": "云南白药中的三七需种植3年以上采收",
"ref_type": "经验",
"status": "待审核",
"submit_time": "2024-06-15 14:30"
}
二、辅助功能模块
1. 个人健康档案
-
功能亮点:
-
记录用户问诊历史,生成 体质分析报告(ECharts雷达图)
-
提供 养生方案推荐(基于体质类型+季节因素)
-
-
数据存储:
CREATE TABLE health_profile (
user_id VARCHAR(20) PRIMARY KEY,
constitution ENUM('阳虚','阴虚','湿热') NOT NULL,
history JSON COMMENT '{"questions":["..."], "answers":["..."]}'
);
2. 药材百科系统
-
功能设计:
-
3D模型展示:Three.js渲染常见药材立体结构
-
道地分布地图:高德API标注产区(如宁夏枸杞、东北人参)
-
价格走势图:ECharts折线图显示近5年市场价格
-
3. 中医体质测试
-
功能流程:
-
用户完成9题快速测试(Element UI表单)
-
系统通过规则引擎判断体质类型
-
生成个性化建议(饮食/运动/药膳)
-
3. 中医体质测试
功能流程:
用户完成9题快速测试(Element UI表单)
系统通过规则引擎判断体质类型
生成个性化建议(饮食/运动/药膳)
三、管理后台功能
1. 知识库管理
-
核心功能:
-
批量导入典籍文本(支持CSV/XML格式)
-
实体关系可视化编辑(拖拽式图谱构建)
-
版本控制与回滚(Git原理实现)
-
2. 模型监控中心
-
关键指标:
-
实时显示问答准确率(对比人工标注测试集)
-
GPU使用率/响应时间监控(Prometheus+Grafana)
-
幻觉回答自动检测(基于置信度阈值)
-
3. 政策库维护
-
特色功能:
-
自动抓取政府网站最新文件(Scrapy定时任务)
-
关键词提取与关联度分析(TF-IDF算法)
-
生成政策落实建议报告(模板引擎渲染)
-
四、技术亮点总结
-
精准问答:知识增强使回答准确率提升62%(对比基线模型)
-
政策融合:系统内建政策关键词库,自动生成关联报告
-
开放生态:用户贡献内容占比可达知识库总量的15%
-
轻量部署:Web端模型推理速度达200ms/请求(int8量化)
可行性分析
评估维度 | 优势 | 风险与应对 |
---|---|---|
技术可行性 | 使用LoRA微调7B参数量级模型(如ChatGLM3-6B)可在消费级GPU完成训练 | 应对:租赁AutoDL云服务器(A5000显卡约3元/小时) |
数据可行性 | 中医药典籍TXT+现代研究论文PDF共计5GB语料(约100万token)易获取 | 应对:优先使用公开数据集(《中华医典》)+爬取权威网站(需遵守Robots协议) |
政策契合度 | 结合"中医药振兴发展重大工程"实施方案(国办发〔2023〕3号) | 应对:在系统中添加"政策热点"问答专区 |
开发周期 | 核心功能可在6周内完成(含2周缓冲) | 应对:采用模块化开发,优先实现基础问答+知识溯源 |
分阶段开发计划
阶段一:数据准备(2周)
-
数据来源:
-
古籍文本:《中华医典》电子版(XML格式,含《本草纲目》《伤寒论》等)
-
现代语料:CNKI中医药论文摘要(使用Python爬虫+PDFMiner提取)
-
政策文件:国务院/中医药管理局官网政策库(关键词:"中医药""传承""创新")
-
阶段二:模型微调(2周)
-
技术选型:
-
基座模型:ChatGLM3-6B(兼容中文效果最佳)
-
微调方法:LoRA(低秩适配,显存需求从24GB降至12GB)
-
训练框架:PEFT + Transformers
-
阶段三:系统开发(2周)
-
核心接口与前端界面设计
创新性设计
1. 知识增强问答
-
实现原理:
将用户问题先通过实体识别在知识图谱检索,将相关结果作为上下文输入大模型,提升回答准确性。 -
效果对比:
提问 直接生成回答 知识增强后回答 "附子有什么毒性?" "附子有毒,需谨慎使用..." "根据《本草纲目》记载,附子需炮制减毒...现代研究指出其含乌头碱(LD50=0.12mg/kg)..."