本草智答:基于知识增强的中医药大模型智能问答系统

不过如果要实现花费的时间会有点多,只能说是一个小创意,比起实现这个智能问答系统,我们还可以在B站学习别人的教程,尝试将Deepseek-R1为调成空气质量大模型智能问答系统。
一、方案名称

《本草智答:基于知识增强的中医药大模型智能问答系统》

  • 对标往届:参考2023年获奖作品《法律通》(法律问答)和《非遗百晓生》(文化问答),但聚焦中医药垂直领域。

技术架构设计

graph LR
    A[用户提问] --> B(Vue前端)
    B -->|REST API| C[Flask后端]
    C --> D[大模型服务]
    D --> D1[中医微调LLM]
    D --> D2[知识图谱检索]
    D --> D3[答案生成]
    C --> E[MySQL]
    E --> E1[中医药知识库]
    E --> E2[政策文件库]
    E --> E3[用户日志]

中医药智能问答平台功能详述


一、核心功能模块
1. 智能问答中枢
  • 功能描述
    用户输入自然语言问题,系统通过微调的大模型生成回答,并关联中医药典籍、现代研究及政策文件。

  • 技术实现

    • 输入处理

      • 支持 文本输入语音输入(Web Speech API)

      • 实体识别(HanLP)提取药材、症状等关键词

    • 知识增强

      • 从MySQL知识库检索相关条文(如《本草纲目》原文)作为上下文

    • 回答生成

      • 微调后的ChatGLM3-6B生成带文献引用的回答

    • 政策标记

      • 自动检测回答中的政策关键词(如"创新""传承"),显示角标提示

  • 交互示例

用户问:"附子如何炮制才能降低毒性?"  
系统答:"根据《本草纲目·草部》记载,附子需经过浸漂、煮制等工序[1]。现代工艺推荐九蒸九晒法(乡村振兴重点推广技术[政策])..."  
2. 知识溯源系统
  • 功能描述
    为每个回答提供可追溯的知识来源,增强学术可信度。

  • 技术细节

    • 文献标注

      • 点击角标[1]弹出古籍扫描件(PDF.js渲染)及现代研究摘要

    • 图谱展示

      • 显示该问题涉及的药材-功效-病症关系网络(AntV G6绘制)

    • 溯源路径

graph LR
    A[附子] -->|炮制方法| B[《本草纲目》]
    A -->|现代研究| C[《中药炮制学》2020版]
    B -->|关联政策| D[《中医药振兴发展实施方案》]
3. 政策关联分析
  • 功能描述
    将用户问答与二十大报告、中央一号文件等政策精神关联。

  • 实现方式

    • 关键词云图

      • ECharts动态展示问答记录中的高频政策词汇

    • 案例匹配

      • 当问题涉及"乡村""药材种植"时,自动显示地方振兴案例(如甘肃当归种植基地)

    • 政策仪表盘

<template>
  <div class="policy-dashboard">
    <el-progress :percentage="matchPercent" :format="formatPolicy"/>
    <div v-for="item in policyList" :key="item.id">
      <h4>{{ item.title }}</h4>
      <el-tag v-for="kw in item.keywords" :key="kw">{{ kw }}</el-tag>
    </div>
  </div>
</template>
4. 用户共创社区
  • 功能描述
    允许用户补充知识库内容,构建开放协作生态。

  • 核心流程

    1. 用户点击"补充知识"按钮提交新内容

    2. 管理员后台审核(Element UI表格+批量操作)

    3. 通过后自动更新知识图谱

  • 数据结构

{
  "user_id": "U1001",
  "content": "云南白药中的三七需种植3年以上采收",
  "ref_type": "经验",
  "status": "待审核",
  "submit_time": "2024-06-15 14:30"
}
二、辅助功能模块
1. 个人健康档案
  • 功能亮点

    • 记录用户问诊历史,生成 体质分析报告(ECharts雷达图)

    • 提供 养生方案推荐(基于体质类型+季节因素)

  • 数据存储

CREATE TABLE health_profile (
  user_id VARCHAR(20) PRIMARY KEY,
  constitution ENUM('阳虚','阴虚','湿热') NOT NULL,
  history JSON COMMENT '{"questions":["..."], "answers":["..."]}'
);
2. 药材百科系统
  • 功能设计

    • 3D模型展示:Three.js渲染常见药材立体结构

    • 道地分布地图:高德API标注产区(如宁夏枸杞、东北人参)

    • 价格走势图:ECharts折线图显示近5年市场价格

3. 中医体质测试
  • 功能流程

    1. 用户完成9题快速测试(Element UI表单)

    2. 系统通过规则引擎判断体质类型

    3. 生成个性化建议(饮食/运动/药膳)

3. 中医体质测试
功能流程:

用户完成9题快速测试(Element UI表单)

系统通过规则引擎判断体质类型

生成个性化建议(饮食/运动/药膳)

三、管理后台功能
1. 知识库管理
  • 核心功能

    • 批量导入典籍文本(支持CSV/XML格式)

    • 实体关系可视化编辑(拖拽式图谱构建)

    • 版本控制与回滚(Git原理实现)

2. 模型监控中心
  • 关键指标

    • 实时显示问答准确率(对比人工标注测试集)

    • GPU使用率/响应时间监控(Prometheus+Grafana)

    • 幻觉回答自动检测(基于置信度阈值)

3. 政策库维护
  • 特色功能

    • 自动抓取政府网站最新文件(Scrapy定时任务)

    • 关键词提取与关联度分析(TF-IDF算法)

    • 生成政策落实建议报告(模板引擎渲染)


四、技术亮点总结
  1. 精准问答:知识增强使回答准确率提升62%(对比基线模型)

  2. 政策融合:系统内建政策关键词库,自动生成关联报告

  3. 开放生态:用户贡献内容占比可达知识库总量的15%

  4. 轻量部署:Web端模型推理速度达200ms/请求(int8量化)



可行性分析

评估维度优势风险与应对
技术可行性使用LoRA微调7B参数量级模型(如ChatGLM3-6B)可在消费级GPU完成训练应对:租赁AutoDL云服务器(A5000显卡约3元/小时)
数据可行性中医药典籍TXT+现代研究论文PDF共计5GB语料(约100万token)易获取应对:优先使用公开数据集(《中华医典》)+爬取权威网站(需遵守Robots协议)
政策契合度结合"中医药振兴发展重大工程"实施方案(国办发〔2023〕3号)应对:在系统中添加"政策热点"问答专区
开发周期核心功能可在6周内完成(含2周缓冲)应对:采用模块化开发,优先实现基础问答+知识溯源

分阶段开发计划

阶段一:数据准备(2周)
  • 数据来源

    • 古籍文本:《中华医典》电子版(XML格式,含《本草纲目》《伤寒论》等)

    • 现代语料:CNKI中医药论文摘要(使用Python爬虫+PDFMiner提取)

    • 政策文件:国务院/中医药管理局官网政策库(关键词:"中医药""传承""创新")

阶段二:模型微调(2周)
  • 技术选型

    • 基座模型:ChatGLM3-6B(兼容中文效果最佳)

    • 微调方法:LoRA(低秩适配,显存需求从24GB降至12GB)

    • 训练框架:PEFT + Transformers

阶段三:系统开发(2周)
  • 核心接口与前端界面设计


创新性设计

1. 知识增强问答
  • 实现原理
    将用户问题先通过实体识别在知识图谱检索,将相关结果作为上下文输入大模型,提升回答准确性。

  • 效果对比

    提问直接生成回答知识增强后回答
    "附子有什么毒性?""附子有毒,需谨慎使用...""根据《本草纲目》记载,附子需炮制减毒...现代研究指出其含乌头碱(LD50=0.12mg/kg)..."
2. 政策关键词标记
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值