指数加权的公式推导

在这里插入图片描述
示例

假设我们有一组数据 x=[1,2,3,4,5],我们选择 β=0.1和β=0.9 来计算 EMA。

(1)β=0.1

  1. 初始化:

    EMA0=x0=1EMA_0=x_0=1EMA0=x0=1

  2. 计算后续值:
    $$
    EMA_1=0.1×1+0.9×2=1.9\

    EMA_2=0.1×1.9+0.9×3=2.89\

    EMA_3=0.1×2.89+0.9×4=3.889\

    EMA_4=0.1×3.889+0.9×5=4.8889
    $$

最终,EMA 的值为 [1,1.9,2.89,3.889,4.8889]。

(2)β=0.9

  1. 初始化:

    EMA0=x0=1EMA_0=x_0=1EMA0=x0=1

  2. 计算后续值:
    $$
    EMA_1=0.9×1+0.1×2=1.1\

    EMA_2=0.9×1.1+0.1×3=1.29\

    EMA_3=0.9×1.29+0.1×4=1.561\

    EMA_4=0.9×1.561+0.1×5=1.9049
    $$

最终,EMA 的值为 [1,1.1,1.29,1.561,1.9049]。

可以看到:

  • 当 β=0.9 时,历史数据的权重较高,平滑效果较强。EMA值变化缓慢(新数据仅占10%权重),滞后明显。
  • 当 β=0.1时,近期数据的权重较高,平滑效果较弱。EMA值快速逼近最新数据(每次新数据占90%权重)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值