DeepSeek:回望AI三大主义与加强通识教育

用最简单的语言,在 AI 时代,带领更多的人一起前行。

从 2007 年,乔布斯发布 IPhone 手机后,人们进入了智能手机的时代,于是移动互联网的时代来了。

一、从 GPT 到 DeepSeek

早起的 GPT,并没有引起行业外的人注意,多数还在计算机行业内折腾。人们在谈论大模型的参数有多少时,对于外行看来,更多的是自嗨模式,对于普通人不会关心。

从用户视角看产品,这样在介绍如何产品时,第一时间可以抓住用户的注意力。

DeepSeek 模型的基础是基于 Google 的 Transformer 架构,在算法和工程模式进行了创新。

二、DeepSeek V3 模型

1、混合专家模型

DeepSeek的61个架构层中,58个架构层各自包含256个专家和1个共享专家,V3基座模型总共有6710亿参数,但是每次token仅激活8个专家、370亿参数(~5.5%)。

意味着一次调用,很多人专家其实不用激活起来干活的。


2、多头潜在注意力机制

对巨大的注意力机制矩阵进行压缩,减少参与运算的参数数量,显存占用仅为其他大模型的5%-13%。

得益于这两个机制,DeepSeek 在行业内被人熟知。

三、DeepSeek R1

强化模型推理,进行深度思考,用户可以整个推理过程,这个策略显然是站在用户的视角。

浙江大学在这方面素材的编写、人才的培养形成了机制,并形成了相对完整的体系。

这一切在DeepSeek 官方网站就可以使用:https://www.deepseek.com/

浙江大学 DeepSeek 系列教程:DeepSeek教程

学废了,帮忙点个赞!这对我非常重要!

### 关于 DeepSeek 使用手册及相关文档的信息 DeepSeek 是一款强AI 工具,在多个领域有着广泛的应用场景。以下是关于其使用手册和相关文档的具体介绍: #### 官方及学术机构发布的手册 浙江学推出了两份针对 DeepSeek 的使用手册,分别从理论基础和技术实践两个角度进行了深入探讨: - **《DeepSeek回望AI主义加强通识教育》** 提供了对 DeepSeek 技术背景及其在教育领域的应用分析[^1]。 - **《Chatting or Acting?DeepSeek的突破边界未来蓝图》** 则聚焦于 DeepSeek 的实际操作技巧以及未来发展潜力。 这些手册不仅适合初学者了解基本概念,也能够帮助高级用户掌握更深层次的技术细节。 #### 进阶教程蓝皮书 由全球数据资产理事会(DAC)编写的 **DeepSeek 使用教程蓝皮书** 被认为是从入门到精通的重要参考资料之一。它涵盖了以下几个方面: - 核心功能解析; - 实际使用的具体方法指导; - 部署过程中的注意事项; - 各种可能的应用场景展示; - 对未来的展望和发展趋势预测[^2]。 对于希望深入了解并熟练运用 DeepSeek 的开发者来说,这份蓝皮书无疑是非常有价值的资源。 #### 编程人员专用实战手册 考虑到编程工作者的需求,《让代码效率翻倍!程序员都在偷偷用的DeepSeek实战手册》特别强调了如何利用 DeepSeek 来提高编码速度质量。文中提到,“新手可以通过简单的配置快速上手”,而对于有经验的工程师,则提供了更多优化建议和案例研究[^3]。 此外,文章还列举了一些实用的小贴士,比如怎样设置环境变量以便更好地集成其他工具链等信息。 #### 综合性学习材料集合 如果想要获取更加全面的学习体验,可以参考名为 **DeepSeek:技术颠覆or创新共赢|附44页PDF文件下载** 的综合型资料包。这里面包含了但不限于以下内容: - 规模预训练模型的基础知识; - 不同框架之间的对比评测报告; - 行业专家访谈记录; - 开发者社区常见问答汇总等等[^4]。 以上所有提及的手册均可在网络上找到对应的电子版本或者纸质版购买链接,请根据个人偏好自行检索下载地址。 ```python import deepseek as ds # 初始化 DeepSeek 模型实例 model = ds.Model('path/to/model') # 加载输入数据 data = model.load_data('input.jsonl') # 执行推理任务 output = model.predict(data) print(output) ``` 上述代码片段展示了如何加载一个预先训练好的 DeepSeek 模型,并对其进行简单测试的一个例子。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值