文章目录
摘 要
图像修复技术致力于对图像中的缺损部分进行恢复,目的是为了生成清晰合理的
图像。传统的修复方法对于破损部分较大和过于复杂背景的图像时,往往会出现生成图像比较模糊或生成部分不合理等问题。深度学习技术在数据资源较少时,也能很好的完成对缺损图像的修复。但是,现有的方法也有许多亟待改善的地方。例如,在面临图像有效信息过少、背景多变时,这些方法往往面临感受野不足的问题,导致出现生成内容与周围内容相差较大的情况。针对上面的问题,本文以提升对不规则图像修复成效为目的,重点聚焦于基于深度学习技术的图像修复方法探究。主要内容如下:
本文针对主流方法在修复时对图像中纹理和结构的有效信息提取较少,导致生成
图像比较模糊或生成部分不合理的问题,设计了一种基于U-Net和生成对抗网络的双分支修复方法。该方法从纹理和结构相互耦合的方式来进行图像修复,加入混合注意力模块和多尺度残差模块能使生成网络更准确地捕捉图像中的细节和结构信息,从而实现高质量的图像修复。使图像的纹理更加清晰,并将修复的结果传入判别网络中,优化修复质量。实验结果表明,该方法在人脸和自然场景修复上都取得了较好的效果。
【关键词】:图像修复;深度学习;生成对抗网络;
第1章 绪论
1.1 研究背景与意义
随着科技的快速发展,图像作为承载信息的重要载体,在人们日常生活中的作用越来越大,它是我们快速获取和传递信息的重要手段,能帮我们更加准确地认知世界。然而,在图像的获取、压缩、传输、复制等过程中非常容易受到失真、噪声等外界因素的影响,进而导致图像的清晰度变差以及图片部分区域缺失问题,这对于我们获取信息造成了极大的影响。在计算机中图像是以二维矩阵的方式保存,我们把它统一称作数字图像。图像的每个像素点都对应一个值,在 RGB 图像中,图像被分解为红、绿、蓝三个基本的组成部分,常称之为“分量”或“颜色分量”。每个像素在这三个分量上的值均被限制在 0 至 255 的范围内,三个分量上的图叠加在一起,组成了我们平时所看到的图片。数字图像技术可以采集并存储各种非数字图像,统称为数字图像。图像修复技术致力于恢复或修复数字图像中因各种原因造成的缺失或错误像素的区域。其核心目标是通过精细的算法,使修复后的区域在视觉上呈现真实感,同时确保与原始图像的上下文保持高度一致,从而达到整体图像的和谐统一。作为一种恢复技术,其应用领域覆盖多个方面,如历史文物修复、照片复原等多个方面。此外,它还能修复在传输过程中受损的图像,确保图像的真实性和准确性。无论是为了保护珍贵的文物,还是为了恢复电影胶片的原始内容,抑或是去除数字照片上的水印,图像修复技术都发挥着不可或缺的作用。数字图像缺失信息的复原技术涵盖了图像修复与图像补全两大核心领域。其中,图像修复,也被称作图像绘制,是通过巧妙利用图像中已知区域的信息,来精确填补那些缺失或损坏的部分,旨在重塑图像的完整性和内在连贯性。而图像补全则更注重于通过预测和推断,填充图像中的缺失部分,使其内容更加完整和清晰。这两种技术共同构成了数字图像缺失信息复原的核心方法。在学术研究中,图像修复与图像复原这两个概念通常不被严格区分,它们往往被混用,因为两者在目标上都致力于恢复图像的完整性和质量。随着人类社会逐步迈向数字化时代,图像修复的需求变得愈发重要和迫切。这些需求涵盖了众多具有多样且复杂背景的图像,因此,所构建的修复模型需兼具出色的灵活性和高效性,以便精确地对这些背景进行建模。传统的图像修复方法在面对复杂背景时面临巨大的挑战,其建模能力已无法满足适应当下日益增长的修复需求。鉴于此,为了满足现在的需求,人们正致力于研究使用深度学习的技术来解决这个难题,
以期找到更为高效和准确的方法。深度学习模型通常构建为非线性模型,这种模型具有出色的拟合能力,可以灵活适应各种目标函数。因此,深度学习模型在图像修复领域展现出显著优势,它可以自动识别并提取复杂场景图像的特征信息,并有效地实现对这些图像的修复。本文的核心内容是对基于深度学习的图像修复方法来展开进一步的探索与研究。
1.2 国内外研究现状
图像修复技术致力于对图像中的缺损部分进行恢复,目的是为了生成清晰合理的图像。从它发展的时间线来看,该技术逐渐形成了两大主要分支:一类是基于传统算法的图像修复,另一类是基于深度学习框架构建的图像修复方法。这两大类别方法各具特色并各有优势。
1.3 研究内容及主要工作
本文主要研究基于深度学习的图像修复算法,研究内容主要分为两部分,第一部分是构建基于U-Net的结构纹理图像修复方法,以精确恢复图像中的结构纹理信息;第二部分是进一步探索了结