Mask R-CNN进行葡萄多模态检测分割数据集 目标检测和语义分割 葡萄多模态视觉数据融合、葡萄果实语义分割和目标检测的训练及应用
使用Mask R-CNN训练葡萄多模态数据集(可见光、深度和近红外图像)基于PyTorch的torchvision
库来实现。

葡萄多模态目标检测和语义分割数据集,XML、json标签,葡萄果实的采摘点定位准确率依赖于目标检测和语义分割网络的性能。
然而,在实际应用场景中,基于可见光图像的葡萄果实目标识别准确率和分割精度易受光照变化、复杂环境影响,往往表现不佳,且葡萄果实成串生长,现有苹果、梨子等多模态数据集难以满足串形葡萄果实的识别需求。
构建基于可见光、深度、近红外的葡萄多模态目标检测和语义分割数据集,对于探索更高识别率和更强泛化能力的葡萄果实目标检测和语义分割模型至关重要。本数据集约39.08 GB,共收集了在不同光照和遮挡条件下青色、紫色两类6个品种的葡萄高质量多模态视频流数据,并从中提取3954张图像样本进行语义分割和目标检测标注。
在使用旋转、缩放、错切、平移,以及高斯模糊等图像增强手段下,可满足主流深度学习模型训练需要。
讨如何使用这个数据集进行模型训练和评估。
数据准备
首先,确保你的环境已经安装了所有必要的库,如PyTorch、TensorFlow等,以及处理图像、JSON/XML标签所需的库:
pip install torch torchvision opencv-python xmltodict numpy tqdm
对于数据集,你需要将其解压并组织好结构以便后续加载。假设你的数据集按照以下结构存放:
dataset/
images/ # 包含所有的原始图像(RGB, Depth, NIR)
annotations/ # 包含对应的标注文件(XML或JSON格式)
加载数据集
编写一个自定义的数据加载器来读取这些多模态图像及其相应的标注文件。这里以PyTorch为例:
import os
import cv2
import torch
from torch.utils.data import Dataset
import json
import xml.etree.ElementTree as ET
class GrapeDataset(Dataset):
def __init__(self, image_dir, annotation_dir, transform=None):
self.image_dir = image_dir
self.annotation_dir = annotation_dir
self.transform = transform
self.images = os.listdir(image_dir)
def __len__(self):
return len(self.images)
def _parse_annotation(self, annotation_path):
if annotation_path.endswith('.json'):
with open(annotation_path, 'r') as f:
data = json.load(f)
# 解析JSON格式的标注数据
elif annotation_path.endswith('.xml'):
tree = ET.parse(annotation_path)
root = tree.getroot()
# 解析XML格式的标注数据
# 返回解析后的标注信息,比如bounding boxes和segmentation masks
pass
def __getitem__(self, idx):
img_name = self.images[idx]
img_path = os.path.join(self.image_dir, img_name)
annotation_path = os.path.join(self.annotation_dir, img_name.split('.')[0] + '.xml')
image = cv2.imread(img_path)
annotations = self._parse_annotation(annotation_path)
if self.transform:
augmented = self.transform(image=image, mask=annotations['mask'])
image = augmented['image']
annotations['mask'] = augmented['mask']
return image, annotations
代码只是一个框架,具体实现细节需要根据实际的标注格式和需求来完成。
模型选择与训练
考虑到任务的需求(目标检测+语义分割),使用一些流行的模型架构,例如Faster R-CNN或者Mask R-CNN来进行目标检测和语义分割。PyTorch的torchvision
提供了预训练的模型,可以直接用于迁移学习:
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
def get_model_instance_segmentation(num_classes):
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, num_classes)
return model
训练模型
利用之前创建的数据加载器和选定的模型进行训练:
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = get_model_instance_segmentation(num_classes) # 根据实际情况确定类别数
model.to(device)
# 定义优化器等训练参数
optimizer = torch.optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)
# 开始训练循环...
具体的训练循环、数据增强、评价指标等需要根据项目的具体情况进一步设计和实现。希望以上信息能够帮助你开始构建和训练针对葡萄果实的目标检测和语义分割模型。
使用Mask R-CNN训练你的葡萄多模态数据集(包含可见光、深度和近红外图像),基于PyTorch的torchvision
库来实现。
以下是详细的步骤和代码示例,包括数据准备、模型定义、训练过程等。
1. 环境配置
确保你已经安装了必要的依赖:
pip install torch torchvision opencv-python tqdm
2. 数据准备
首先,需要创建一个自定义的数据集类来加载你的图像和标注(XML或JSON格式)。这里以XML格式为例,如果你的数据是JSON格式,请相应地调整解析逻辑。
import os
import cv2
import torch
from torch.utils.data import Dataset
import xml.etree.ElementTree as ET
import numpy as np
from torchvision.transforms import functional as F
class GrapeDataset(Dataset):
def __init__(self, image_dir, annotation_dir, transforms=None):
self.image_dir = image_dir
self.annotation_dir = annotation_dir
self.transforms = transforms
self.imgs = list(sorted(os.listdir(image_dir)))
def __getitem__(self, idx):
img_path = os.path.join(self.image_dir, self.imgs[idx])
annotation_path = os.path.join(self.annotation_dir, self.imgs[idx].replace('.jpg', '.xml'))
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
tree = ET.parse(annotation_path)
root = tree.getroot()
boxes = []
labels = []
masks = []
for member in root.findall('object'):
class_name = member.find('name').text
# 假设类别映射为 {'grape': 1}
label = 1 if class_name == 'grape' else 0
bbox = member.find('bndbox')
xmin = int(bbox.find('xmin').text) - 1
ymin = int(bbox.find('ymin').text) - 1
xmax = int(bbox.find('xmax').text) - 1
ymax = int(bbox.find('ymax').text) - 1
boxes.append([xmin, ymin, xmax, ymax])
labels.append(label)
mask_path = os.path.join(self.annotation_dir, member.find('mask').text)
mask = cv2.imread(mask_path, 0)
mask = mask / 255.0 # 归一化到[0,1]
masks.append(mask)
boxes = torch.as_tensor(boxes, dtype=torch.float32)
labels = torch.as_tensor(labels, dtype=torch.int64)
masks = torch.as_tensor(masks, dtype=torch.uint8)
image_id = torch.tensor([idx])
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
iscrowd = torch.zeros((len(boxes),), dtype=torch.int64)
target = {}
target["boxes"] = boxes
target["labels"] = labels
target["masks"] = masks
target["image_id"] = image_id
target["area"] = area
target["iscrowd"] = iscrowd
if self.transforms is not None:
img, target = self.transforms(img, target)
return F.to_tensor(img), target
def __len__(self):
return len(self.imgs)
3. 模型定义与加载预训练权重
接下来,定义并加载Mask R-CNN模型:
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
def get_model_instance_segmentation(num_classes):
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, num_classes)
return model
num_classes = 2 # 背景 + 葡萄
model = get_model_instance_segmentation(num_classes)
4. 数据增强及转换
为了提高模型泛化能力,可以应用一些数据增强技术:
from torchvision import transforms as T
def get_transform():
transforms = []
transforms.append(T.ToTensor())
# 可选:添加更多变换,如随机翻转等
if True:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
5. 训练模型
设置训练循环,进行模型训练:
from engine import train_one_epoch, evaluate
import utils
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
dataset = GrapeDataset(image_dir='path/to/images', annotation_dir='path/to/annotations', transforms=get_transform())
data_loader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, num_workers=4, collate_fn=utils.collate_fn)
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
num_epochs = 10
for epoch in range(num_epochs):
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
lr_scheduler.step()
evaluate(model, data_loader, device=device)
请注意,上述代码中的engine.py
和utils.py
文件可以从官方示例获取,并根据需要进行修改。
从数据准备、模型定义到训练的完整流程。请根据实际情况调整路径、超参数等细节。针对葡萄果实的目标检测和语义分割模型。