深度学习框架如何训练打架/摔倒识别数据集 建立基于深度学习yolov8打架摔倒检测系统

深度学习框架如何训练打架/摔倒识别数据集 建立基于深度学习yolov8打架摔倒检测系统

打架/摔倒识别数据集 yolo格式
在这里插入图片描述

类别:打架 摔倒 持械三种
训练,路径改动即可训练。
训练集:11596
验证集:1289
在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
基于YOLOv8的打架/摔倒识别系统,我
:配置数据集、定义模型配置文件、进行模型训练,并实现推理功能。以下是详细的指导和
代码示例。仅供参考。

1. 数据准备

按照YOLO格式标注,并且分为训练集和验证集。每张图片应有对应的.txt标注文件,其格式为<class_index> <x_center> <y_center> <width> <height>,其中坐标值归一化到0-1之间。

创建数据配置文件

创建一个名为fight_fall_weapon.yaml的文件来定义数据集路径和类别信息:

train: /path/to/train/images
val: /path/to/val/images

nc: 3  # 类别数量
names: ['fight', 'fall', 'weapon']  # 类别名称

请根据实际情况替换/path/to/train/images/path/to/val/images为你自己的路径。

2. 模型训练

使用YOLOv5的训练脚本来训练模型。首先确保你已经安装了必要的依赖并克隆了YOLOv5仓库:

pip install torch torchvision torchaudio
git clone https://github.com/ultralytics/yolov5  # 克隆YOLOv5仓库
cd yolov5
pip install -r requirements.txt

然后运行以下命令开始训练:

python train.py --img 640 --batch 16 --epochs 100 --data fight_fall_weapon.yaml --weights yolov5s.pt
  • --img: 输入图像尺寸(例如640)。
  • --batch: 批次大小(例如16)。
  • --epochs: 训练周期数(例如100)。
  • --data: 数据配置文件路径(即fight_fall_weapon.yaml)。
  • --weights: 预训练权重路径(可以使用YOLOv5的预训练模型作为起点,如yolov5s.pt)。

3. 推理与检测系统的构建

单张图片推理

训练完成后,你可以使用以下命令对单张图片进行预测:

python detect.py --source path/to/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
构建深度学习打架识别检测系统

下面是一个简单的Python脚本示例,用于加载训练好的模型并对新图像进行推理:在这里插入图片描述

import torch

# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='runs/train/exp/weights/best.pt')  # 或者直接使用路径加载

def detect_fight_fall_weapon(image_path):
    # 图像路径
    results = model(image_path)
    
    # 显示结果
    results.print()  # 控制台输出
    results.show()   # 显示标注后的图像
    
    return results

# 示例调用
image_path = 'path/to/image.jpg'
detect_fight_fall_weapon(image_path)

4. 性能评估

在部署前,建议对模型进行全面的性能评估,包括但不限于mAP、召回率、精确率等指标。这可以通过运行val.py脚本完成:

python val.py --data fight_fall_weapon.yaml --weights runs/train/exp/weights/best.pt --img 640

5. 进一步优化与部署

  • 性能优化:根据实际需要调整输入尺寸、批次大小、以及后处理参数(如NMS阈值)等以达到更好的性能或准确率。
  • 部署:可以选择将模型转换为ONNX格式或其他轻量级格式以便于在不同的平台上部署。YOLOv8支持导出为多种格式,方便部署到移动端或服务器端。
# 导出为ONNX格式
python export.py --weights runs/train/exp/weights/best.pt --include onnx

基于YOLOv5的打架/摔倒识别系统。

注意:确保所有路径都根据你的实际文件位置进行了正确的设置,并且数据集已按照YOLO格式正确标注。此外,根据你的硬件条件适当调整训练参数(如批次大小和图像尺寸)

以上文字及代码仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值