深度学习框架如何训练打架/摔倒识别数据集 建立基于深度学习yolov8打架摔倒检测系统
打架/摔倒识别数据集 yolo格式
类别:打架 摔倒 持械三种
训练,路径改动即可训练。
训练集:11596
验证集:1289
1
1
基于YOLOv8的打架/摔倒识别系统,我
:配置数据集、定义模型配置文件、进行模型训练,并实现推理功能。以下是详细的指导和
代码示例。仅供参考。
1. 数据准备
按照YOLO格式标注,并且分为训练集和验证集。每张图片应有对应的.txt
标注文件,其格式为<class_index> <x_center> <y_center> <width> <height>
,其中坐标值归一化到0-1之间。
创建数据配置文件
创建一个名为fight_fall_weapon.yaml
的文件来定义数据集路径和类别信息:
train: /path/to/train/images
val: /path/to/val/images
nc: 3 # 类别数量
names: ['fight', 'fall', 'weapon'] # 类别名称
请根据实际情况替换/path/to/train/images
和/path/to/val/images
为你自己的路径。
2. 模型训练
使用YOLOv5的训练脚本来训练模型。首先确保你已经安装了必要的依赖并克隆了YOLOv5仓库:
pip install torch torchvision torchaudio
git clone https://github.com/ultralytics/yolov5 # 克隆YOLOv5仓库
cd yolov5
pip install -r requirements.txt
然后运行以下命令开始训练:
python train.py --img 640 --batch 16 --epochs 100 --data fight_fall_weapon.yaml --weights yolov5s.pt
--img
: 输入图像尺寸(例如640)。--batch
: 批次大小(例如16)。--epochs
: 训练周期数(例如100)。--data
: 数据配置文件路径(即fight_fall_weapon.yaml
)。--weights
: 预训练权重路径(可以使用YOLOv5的预训练模型作为起点,如yolov5s.pt
)。
3. 推理与检测系统的构建
单张图片推理
训练完成后,你可以使用以下命令对单张图片进行预测:
python detect.py --source path/to/image.jpg --weights runs/train/exp/weights/best.pt --conf 0.25
构建深度学习打架识别检测系统
下面是一个简单的Python脚本示例,用于加载训练好的模型并对新图像进行推理:
import torch
# 加载模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='runs/train/exp/weights/best.pt') # 或者直接使用路径加载
def detect_fight_fall_weapon(image_path):
# 图像路径
results = model(image_path)
# 显示结果
results.print() # 控制台输出
results.show() # 显示标注后的图像
return results
# 示例调用
image_path = 'path/to/image.jpg'
detect_fight_fall_weapon(image_path)
4. 性能评估
在部署前,建议对模型进行全面的性能评估,包括但不限于mAP、召回率、精确率等指标。这可以通过运行val.py
脚本完成:
python val.py --data fight_fall_weapon.yaml --weights runs/train/exp/weights/best.pt --img 640
5. 进一步优化与部署
- 性能优化:根据实际需要调整输入尺寸、批次大小、以及后处理参数(如NMS阈值)等以达到更好的性能或准确率。
- 部署:可以选择将模型转换为ONNX格式或其他轻量级格式以便于在不同的平台上部署。YOLOv8支持导出为多种格式,方便部署到移动端或服务器端。
# 导出为ONNX格式
python export.py --weights runs/train/exp/weights/best.pt --include onnx
基于YOLOv5的打架/摔倒识别系统。
注意:确保所有路径都根据你的实际文件位置进行了正确的设置,并且数据集已按照YOLO格式正确标注。此外,根据你的硬件条件适当调整训练参数(如批次大小和图像尺寸)
以上文字及代码仅供参考。