【概率论】概率论题目|协方差

概率论| 切比雪夫不等式 协方差

例1

请添加图片描述
知识:
1.切比雪夫不等式(形似,在问大于随机变量的概率小于多少) P { ∣ x − E X ∣ ≥ ε } ≤ D X ε 2 P \left \{ \left | x -EX \right | \ge\varepsilon \right \} \le \frac{DX}{\varepsilon ^2} P{xEXε}ε2DX
2.相关系数和协方差的关系(提给条件): C o v ( x , y ) = 2 ρ x y D X D Y Cov(x,y) = 2\rho _{xy}\sqrt{DX} \sqrt{DY} Cov(x,y)=2ρxyDX DY
3.含协方差的方差计算公式(切比雪夫不等式右端需求方差): D ( X − Y ) = D X + D Y − 2 C o v ( X , Y ) D(X-Y) = DX + DY - 2Cov(X,Y) D(XY)=DX+DY2Cov(X,Y)
答案:1/12

例2

在这里插入图片描述
知识:
1.协方差计算公式: C o v ( X , Y ) = E X Y − E X E Y Cov(X,Y) = EXY-EXEY Cov(X,Y)=EXYEXEY
2.已知密度函数求期望, E ( g ( x , y ) ) = ∬ g ( x , y ) d x d y E(g(x,y)) = \iint g(x,y)dxdy E(g(x,y))=g(x,y)dxdy
答案:19/400

例3

在这里插入图片描述
知识:
1.协方差计算公式: C o v ( X , Y ) = E X Y − E X E Y Cov(X,Y) = EXY-EXEY Cov(X,Y)=EXYEXEY
2.X,Y独立,则 C o v ( X , Y ) = 0 Cov(X,Y) = 0 Cov(X,Y)=0
3.协方差运算性质 C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY) = abCov(X,Y) Cov(aX,bY)=abCov(X,Y), C o v ( X + Z , Y ) = C o v ( X , Y ) + C o v ( Z , Y ) Cov(X+Z,Y) = Cov(X,Y) + Cov(Z,Y) Cov(X+Z,Y)=Cov(X,Y)+Cov(Z,Y),用来拆开 ∑ \sum
答案:A(C选项为 n + 3 n \frac{n+3}{n} nn+3D选项为 n − 1 n \frac{n-1}{n} nn1)

概念题:

  1. ρ X Y = 1 \rho _{XY} = 1 ρXY=1,则X和Y以概率1线性相关,相关系数绝对值越接近1,XY的线性相关性越强
    在这里插入图片描述
    2.独立和不相关
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值