概率论| 切比雪夫不等式 协方差
例1
知识:
1.切比雪夫不等式(形似,在问大于随机变量的概率小于多少)
P
{
∣
x
−
E
X
∣
≥
ε
}
≤
D
X
ε
2
P \left \{ \left | x -EX \right | \ge\varepsilon \right \} \le \frac{DX}{\varepsilon ^2}
P{∣x−EX∣≥ε}≤ε2DX
2.相关系数和协方差的关系(提给条件):
C
o
v
(
x
,
y
)
=
2
ρ
x
y
D
X
D
Y
Cov(x,y) = 2\rho _{xy}\sqrt{DX} \sqrt{DY}
Cov(x,y)=2ρxyDXDY
3.含协方差的方差计算公式(切比雪夫不等式右端需求方差):
D
(
X
−
Y
)
=
D
X
+
D
Y
−
2
C
o
v
(
X
,
Y
)
D(X-Y) = DX + DY - 2Cov(X,Y)
D(X−Y)=DX+DY−2Cov(X,Y)
答案:1/12
例2
知识:
1.协方差计算公式:
C
o
v
(
X
,
Y
)
=
E
X
Y
−
E
X
E
Y
Cov(X,Y) = EXY-EXEY
Cov(X,Y)=EXY−EXEY
2.已知密度函数求期望,
E
(
g
(
x
,
y
)
)
=
∬
g
(
x
,
y
)
d
x
d
y
E(g(x,y)) = \iint g(x,y)dxdy
E(g(x,y))=∬g(x,y)dxdy
答案:19/400
例3
知识:
1.协方差计算公式:
C
o
v
(
X
,
Y
)
=
E
X
Y
−
E
X
E
Y
Cov(X,Y) = EXY-EXEY
Cov(X,Y)=EXY−EXEY
2.X,Y独立,则
C
o
v
(
X
,
Y
)
=
0
Cov(X,Y) = 0
Cov(X,Y)=0
3.协方差运算性质
C
o
v
(
a
X
,
b
Y
)
=
a
b
C
o
v
(
X
,
Y
)
Cov(aX,bY) = abCov(X,Y)
Cov(aX,bY)=abCov(X,Y),
C
o
v
(
X
+
Z
,
Y
)
=
C
o
v
(
X
,
Y
)
+
C
o
v
(
Z
,
Y
)
Cov(X+Z,Y) = Cov(X,Y) + Cov(Z,Y)
Cov(X+Z,Y)=Cov(X,Y)+Cov(Z,Y),用来拆开
∑
\sum
∑号
答案:A(C选项为
n
+
3
n
\frac{n+3}{n}
nn+3D选项为
n
−
1
n
\frac{n-1}{n}
nn−1)
概念题:
-
ρ
X
Y
=
1
\rho _{XY} = 1
ρXY=1,则X和Y以概率1线性相关,相关系数绝对值越接近1,XY的线性相关性越强
2.独立和不相关