2024深度学习发论文&模型涨点之——光学神经网络
光学神经网络(Optical Neural Networks, ONNs)是一种利用光学器件(如激光、光学调制器、滤波器、探测器等)来模拟和实现神经网络推理功能的计算模型。这种网络通过利用光信号的传播特性,如干涉、衍射等现象,加速神经网络的运算过程,提高计算速度和效率。
清华大学戴琼海院士、方璐教授的研究团队在光学神经网络(ONN)领域取得了突破性成果,该成果以“Fully forward mode training for optical neural networks”为题,荣登Nature。这项研究的核心是全前向智能光计算训练架构,以及“太极-II”光训练芯片的研制,这使得大规模神经网络的高效精准训练成为可能,同时摆脱了原有光计算系统对GPU离线建模的依赖。
我整理了一些光学神经网络【论文+代码】合集,需要的同学公人人人号【AI创新工场】自取。
论文精选
论文1:
Fully forward mode training for optical neural networks
光学神经网络的全前向模式训练
方法
全前向模式(FFM)学习:开发了一种称为全前向模式(FFM)学习的方法,该方法在物理系统上实现了计算密集型的训练过程。
空间对称性和洛伦兹互易性:通过利用空间对称性和洛伦兹互易性,消除了梯度下降训练中反向传播的必要性&#