一、算力需求 计算量巨大: 随着大模型的不断发展,模型的参数量和计算复杂度持续增加,使得模型的训练和推理需要海量的算力支持。 例如,某些自然语言处理的大模型,其参数量可达数百亿甚至上千亿,对算力的需求极为庞大。 对硬件性能要求高: 大模型的训练和推理需要高性能的硬件支持,如高性能的GPU、TPU等,这些硬件能够提供强大的并行计算能力,满足大模型的计算需求。 二、技术和设施的支持 高性能计算(HPC)和分布式计算: 为了应对大模型的高计算量,高性能计算和分布式计算技术被广泛应用。 通过将计算任务分配给多个计算节点,并进行并行计算,可以显著提高计算效率和速度。 GPU加速