opencv识别圆环

opencv 识别圆环_opencv之圆的检测识别-CSDN博客

是这位博主给我的思路,现在分享一下复刻过程

代码讲解

  1. 导入库

    python复制代码
    import cv2 # OpenCV库,用于图像处理
    import numpy as np # NumPy库,用于数组和矩阵运算
  2. 定义函数

    ython复制代码
    def detect_circle_center(image_path):

    这个函数接受一个参数image_path,它是要处理的图像的路径。

  3. 读取图像

    python复制代码
    img = cv2.imread(image_path)
    if img is None:
    print("Error: Unable to load image.")
    return

    使用cv2.imread从指定路径加载图像。如果图像无法加载(例如,路径不正确或文件不存在),则打印错误消息并退出函数。

  4. 转换为灰度图

    python复制代码
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    使用cv2.cvtColor将彩色图像转换为灰度图。这是因为在许多图像处理任务中,灰度图比彩色图像更容易处理。

  5. 高斯模糊去噪

    python复制代码
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)

    使用cv2.GaussianBlur对灰度图进行高斯模糊处理,以减少图像中的噪声。(5, 5)是高斯核的大小,0是标准差(在这个函数中,如果标准差为0,则根据核大小自动计算)。

  6. 图像二值化

    python复制代码
    _, thresh = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)

    使用cv2.threshold对模糊后的图像进行二值化处理。这里使用了cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU作为阈值类型,其中cv2.THRESH_BINARY_INV表示反二值化(即,将高于阈值的像素点设置为黑色,其余设置为白色),cv2.THRESH_OTSU表示使用大津算法自动计算阈值。

  7. 寻找轮廓

    python复制代码
    contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    使用cv2.findContours在二值化图像中寻找轮廓。cv2.RETR_EXTERNAL表示只检索外部轮廓,cv2.CHAIN_APPROX_SIMPLE表示压缩水平方向、垂直方向、对角方向的冗余点,只保留它们的终点。

  8. 遍历轮廓并拟合椭圆

    python复制代码
    for cnt in contours:
    if len(cnt) > 5:
    ellipse = cv2.fitEllipse(cnt)
    cv2.ellipse(img, ellipse, (0, 255, 0), 2)
    center_x, center_y = ellipse[0][0], ellipse[0][1]
    cv2.circle(img, (int(center_x), int(center_y)), 3, (0, 0, 255), -1)
    print(f"Circle center: ({center_x}, {center_y})")

    遍历找到的轮廓。只有当轮廓的点数大于5时,才使用cv2.fitEllipse拟合椭圆。然后,在原始图像上绘制椭圆和圆心。椭圆用绿色((0, 255, 0))绘制,线宽为2;圆心用红色((0, 0, 255))绘制,半径为3,填充绘制(-1表示填充)。

  9. 显示结果图像

    python复制代码
    cv2.imshow("Detected Circle Center", img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    使用cv2.imshow显示处理后的图像。cv2.waitKey(0)表示等待用户按键(这里等待任意键),然后cv2.destroyAllWindows关闭所有OpenCV窗口。

使用示例

在函数的最后,提供了一个使用示例,它加载名为2.jpg的图像并调用detect_circle_center函数进行处理。

python复制代码

image_path = "2.jpg"
detect_circle_center(image_path)

确保将2.jpg替换为您要处理的图像的实际路径。运行此代码后,您应该会看到一个包含检测到的椭圆和圆心的窗口,并且圆心坐标会被打印到控制台。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

隽_永

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值