标题:Transformer与CNN在目标检测对决:现代视觉识别的较量
目标检测作为计算机视觉领域的核心技术之一,一直在不断进化。随着深度学习的发展,卷积神经网络(CNN)和Transformer架构都已被应用于目标检测任务中,各自展现出独特的优势和局限性。本文将探讨这两种架构在目标检测中的有效性,并分析它们各自的优势和不足。
1. 目标检测技术概述
目标检测技术旨在从图像或视频中识别和定位多个目标对象。
2. 卷积神经网络(CNN)在目标检测中的应用
CNN因其强大的特征提取能力而在目标检测中得到广泛应用。
- 优势:对空间层级结构的捕捉能力强,适用于处理图像数据。
- 局限性:对长距离依赖关系的建模能力有限。
3. Transformer在目标检测中的应用
Transformer架构以其自注意力机制在处理序列数据方面表现出色,逐渐被引入到目标检测任务中。
- 优势:能够捕捉长距离依赖关系,灵活处理不同尺度的特征。
- 局限性:对空间结构的感知能力较弱,需要与CNN结合使用。
4. CNN和Transformer的结合
许多现代目标检测模型,如DETR(Detection Transformer)&#x