目录
0 引言
为了改善PSO算法的全局搜索性和局部开发能力,提出多策略改进的粒子群算法(IPSO),该算法引入混沌映射随机初始化种群位置,提高算法多样性、引入非线性惯性权重递减替代常数项权重,有利提高模型全局性能、引入非对称优化学习因子提高算法学习能力,通过三种策略综合提高PSO综合性能。
1 数学模型
IPSO是在PSO基础引入三种改进策略,分别是混沌映射、非线性惯性权重和非对称性学习因子。具体公式如下:
1)混沌映射:基于PSO算法随机初始化种群难以均匀分布问题维度边界范围内,引入混沌序列替代随机初始化,提高PSO多样性。其数学模型如下:
式中a为区间[0,1的混沌序列,d为混沌值,常为0.7,n为种群数目,k为迭代次数;b为符合粒子范围的混沌序列,ul和ll为粒子边界。
2)非线性递减调整权重:标准PSO算法中ω为定值容易导致模型全局性较差,收敛慢,引入非线性递减调整权重更有利改善模型全局收敛性能。其数学模型如下:
式中ωmin,max为惯性权重最值,常为0.4和0.7;kmax为最大迭代次数,α和β范围曲线陡峭程度和中点位置,分别为10和0.35。
3)改进的学习因子:非对称性学习因子提出更有利提高PSO在搜索初期时的自学能力,在后期则强调算法全局性能,故其数学模型如下:
式中C1max,min为局部学习因子最值,C2max,min为全局学习因子的最值,常取值2.5和1。
2 模型性能可视化
IPSO-LSTM的模型性能可视化如下:数据集来源国内某基金五年的数据。
1)精度指标:
2)训练过程:
3 MATLAB代码复现
3.1 伪代码流程图
3.2 IPSO-LSTM
时间序列的代码:(改进的粒子群算法优化长短期记忆神经网络-CSDN博客)