基于matlab-carsim联合仿真,自适应巡航跟车控制,自动保持车距,Carsim与Matlab_simulink联合仿真实现汽车主动避撞和跟车功能(acc自适应巡航)等

matlab-carsim联合仿真,自适应巡航跟车控制。自动保持车距。
Carsim与Matlab/simulink联合仿真实现汽车主动避撞和跟车功能(acc自适应巡航),包含simulink模型(其中整车模型、雷达控制模型、电机模型等),Carsim模型等
在这里插入图片描述


实现MATLAB/Simulink与CarSim联合仿真的自适应巡航控制系统(ACC, Adaptive Cruise Control)涉及多个步骤,包括建立车辆动力学模型、雷达传感器模型、控制算法设计等。下面我将提供一个基本框架,展示如何使用MATLAB/Simulink与CarSim进行联合仿真来实现自动保持车距的功能。

1. CarSim模型准备

首先,你需要在CarSim中创建一个车辆模型,并确保该模型能够被Simulink调用。通常,CarSim提供了直接与Simulink集成的接口,允许你通过Simulink直接控制和观测CarSim中的车辆行为。

2. Simulink模型搭建

接下来,在Simulink中搭建你的控制模型。这包括:

  • 整车模型:通过CarSim提供的S-function或FMU接口导入。
  • 雷达控制模型:用于模拟前方车辆的距离检测。
  • 电机模型:用于模拟加速和减速。
  • ACC控制器:基于前车距离调整车速以维持安全距离。
2.1 创建Simulink模型
% 创建一个新的Simulink模型
modelName = 'AdaptiveCruiseControl';
new_system(modelName);

% 添加CarSim Vehicle Model
add_block('simulink/CarSim Interface/VSolve', [modelName, '/CarSimVehicle']);
set_param([modelName, '/CarSimVehicle'], 'ModelFile', 'your_carsim_model.vsm'); % 替换为你的CarSim模型文件路径

% 添加雷达控制模型
add_block('simulink/User-Defined Functions/MATLAB Function', [modelName, '/RadarModel']);
set_param([modelName, '/RadarModel'], 'FunctionName', 'radar_model');

% 添加电机模型
add_block('simulink/Continuous/Transfer Fcn', [modelName, '/MotorModel']);
set_param([modelName, '/MotorModel'], 'Numerator', '[1]'); % 根据实际需求调整
set_param([modelName, '/MotorModel'], 'Denominator', '[1, 0.5]'); % 根据实际需求调整

% 添加ACC控制器
add_block('simulink/User-Defined Functions/MATLAB Function', [modelName, '/ACCController']);
set_param([modelName, '/ACCController'], 'FunctionName', 'acc_controller');

% 添加观测器
add_block('simulink/Sinks/Scope', [modelName, '/Scope']);

% 连接模块
add_line(modelName, 'CarSimVehicle/RelativeDistance', 'RadarModel/In1');
add_line(modelName, 'RadarModel/Out1', 'ACCController/In1');
add_line(modelName, 'ACCController/Out1', 'MotorModel/In1');
add_line(modelName, 'MotorModel/Out1', 'CarSimVehicle/ThrottleCommand');

% 打开模型
open_system(modelName);
2.2 雷达模型代码
function distance = radar_model(relative_distance)
    % 假设这里只是简单地返回相对距离
    distance = relative_distance;
end
2.3 ACC控制器代码
function throttle_command = acc_controller(distance)
    % 设置期望的安全距离
    desired_distance = 50; % 米
    
    % 计算误差
    error = desired_distance - distance;
    
    % PID 控制器参数
    Kp = 0.1;
    Ki = 0.01;
    Kd = 0.05;
    
    % 初始化积分和微分项
    persistent integral previous_error;
    if isempty(integral) || isempty(previous_error)
        integral = 0;
        previous_error = 0;
    end
    
    % PID 控制器计算
    integral = integral + error * Ki;
    derivative = (error - previous_error) * Kd;
    throttle_command = Kp * error + integral + derivative;
    
    % 限制节气门命令范围
    throttle_command = max(0, min(throttle_command, 1));
    
    % 更新previous_error
    previous_error = error;
end

3. 运行仿真

% 设置仿真时间
set_param(modelName, 'StopTime', '100');

% 运行仿真
sim(modelName);

% 关闭模型
close_system(modelName, 0);

总结

以上是一个简化版的MATLAB/Simulink与CarSim联合仿真实现自适应巡航控制系统的示例。实际应用中,你可能需要根据具体需求对车辆模型、雷达模型以及控制器进行更详细的配置和优化。希望这些信息能帮助你开始构建自己的ACC系统!
在这里插入图片描述
To provide a comprehensive simulation of an Adaptive Cruise Control (ACC) system using MATLAB/Simulink and CarSim, we need to cover several key components:

  1. Vehicle Model: This is typically provided by CarSim.
  2. Radar Sensor Model: To detect the distance and relative speed of the lead vehicle.
  3. PID Controller: To control the throttle and brake based on the detected distance.
  4. Motor Model: To simulate the vehicle’s acceleration and deceleration.

Below is a step-by-step guide and code snippets to help you set up this simulation.

Step 1: Set Up the Simulink Model

% Create a new Simulink model
modelName = 'AdaptiveCruiseControl';
new_system(modelName);

% Add CarSim Vehicle Model
add_block('simulink/CarSim Interface/VSolve', [modelName, '/CarSimVehicle']);
set_param([modelName, '/CarSimVehicle'], 'ModelFile', 'your_carsim_model.vsm'); % Replace with your CarSim model file path

% Add Radar Control Model
add_block('simulink/User-Defined Functions/MATLAB Function', [modelName, '/RadarModel']);
set_param([modelName, '/RadarModel'], 'FunctionName', 'radar_model');

% Add Motor Model
add_block('simulink/Continuous/Transfer Fcn', [modelName, '/MotorModel']);
set_param([modelName, '/MotorModel'], 'Numerator', '[1]'); % Adjust based on actual motor dynamics
set_param([modelName, '/MotorModel'], 'Denominator', '[1, 0.5]'); % Adjust based on actual motor dynamics

% Add ACC Controller
add_block('simulink/User-Defined Functions/MATLAB Function', [modelName, '/ACCController']);
set_param([modelName, '/ACCController'], 'FunctionName', 'acc_controller');

% Add Scope for visualization
add_block('simulink/Sinks/Scope', [modelName, '/Scope']);

% Connect the blocks
add_line(modelName, 'CarSimVehicle/RelativeDistance', 'RadarModel/In1');
add_line(modelName, 'RadarModel/Out1', 'ACCController/In1');
add_line(modelName, 'ACCController/Out1', 'MotorModel/In1');
add_line(modelName, '/MotorModel/Out1', 'CarSimVehicle/ThrottleCommand');

% Open the model
open_system(modelName);

Step 2: Radar Model Code

function distance = radar_model(relative_distance)
    % Simple radar model that returns the relative distance
    distance = relative_distance;
end

Step 3: ACC Controller Code

function throttle_command = acc_controller(distance)
    % Desired safe distance
    desired_distance = 50; % meters
    
    % Calculate error
    error = desired_distance - distance;
    
    % PID controller parameters
    Kp = 0.1;
    Ki = 0.01;
    Kd = 0.05;
    
    % Initialize integral and derivative terms
    persistent integral previous_error;
    if isempty(integral) || isempty(previous_error)
        integral = 0;
        previous_error = 0;
    end
    
    % PID controller calculation
    integral = integral + error * Ki;
    derivative = (error - previous_error) * Kd;
    throttle_command = Kp * error + integral + derivative;
    
    % Limit throttle command range
    throttle_command = max(0, min(throttle_command, 1));
    
    % Update previous_error
    previous_error = error;
end

Step 4: Run the Simulation

% Set simulation time
set_param(modelName, 'StopTime', '100');

% Run the simulation
sim(modelName);

% Close the model
close_system(modelName, 0);

Summary

This setup provides a basic framework for simulating an Adaptive Cruise Control (ACC) system using MATLAB/Simulink and CarSim. You can further refine the models and controllers based on specific requirements and test scenarios. If you have any specific requirements or need further customization, feel free to ask!

在这里插入图片描述
我将提供一个基于MATLAB/Simulink和CarSim的自适应巡航控制系统(ACC)的建模与仿真代码示例。这个示例包括车辆模型、雷达控制模型、电机模型以及PID控制器。

1. 创建Simulink模型

首先,在MATLAB中创建一个新的Simulink模型,并添加必要的模块。

% 创建一个新的Simulink模型
modelName = 'AdaptiveCruiseControl';
new_system(modelName);

% 添加CarSim Vehicle Model
add_block('simulink/CarSim Interface/VSolve', [modelName, '/CarSimVehicle']);
set_param([modelName, '/CarSimVehicle'], 'ModelFile', 'your_carsim_model.vsm'); % 替换为你的CarSim模型文件路径

% 添加雷达控制模型
add_block('simulink/User-Defined Functions/MATLAB Function', [modelName, '/RadarModel']);
set_param([modelName, '/RadarModel'], 'FunctionName', 'radar_model');

% 添加电机模型
add_block('simulink/Continuous/Transfer Fcn', [modelName, '/MotorModel']);
set_param([modelName, '/MotorModel'], 'Numerator', '[1]'); % 根据实际需求调整
set_param([modelName, '/MotorModel'], 'Denominator', '[1, 0.5]'); % 根据实际需求调整

% 添加ACC控制器
add_block('simulink/User-Defined Functions/MATLAB Function', [modelName, '/ACCController']);
set_param([modelName, '/ACCController'], 'FunctionName', 'acc_controller');

% 添加观测器
add_block('simulink/Sinks/Scope', [modelName, '/Scope']);

% 连接模块
add_line(modelName, 'CarSimVehicle/RelativeDistance', 'RadarModel/In1');
add_line(modelName, 'RadarModel/Out1', 'ACCController/In1');
add_line(modelName, 'ACCController/Out1', 'MotorModel/In1');
add_line(modelName, '/MotorModel/Out1', 'CarSimVehicle/ThrottleCommand');

% 打开模型
open_system(modelName);

2. 雷达模型代码

function distance = radar_model(relative_distance)
    % 假设这里只是简单地返回相对距离
    distance = relative_distance;
end

3. ACC控制器代码

function throttle_command = acc_controller(distance)
    % 设置期望的安全距离
    desired_distance = 50; % 米
    
    % 计算误差
    error = desired_distance - distance;
    
    % PID 控制器参数
    Kp = 0.1;
    Ki = 0.01;
    Kd = 0.05;
    
    % 初始化积分和微分项
    persistent integral previous_error;
    if isempty(integral) || isempty(previous_error)
        integral = 0;
        previous_error = 0;
    end
    
    % PID 控制器计算
    integral = integral + error * Ki;
    derivative = (error - previous_error) * Kd;
    throttle_command = Kp * error + integral + derivative;
    
    % 限制节气门命令范围
    throttle_command = max(0, min(throttle_command, 1));
    
    % 更新previous_error
    previous_error = error;
end

4. 运行仿真

% 设置仿真时间
set_param(modelName, 'StopTime', '100');

% 运行仿真
sim(modelName);

% 关闭模型
close_system(modelName, 0);

总结

以上是一个简化版的MATLAB/Simulink与CarSim联合仿真实现自适应巡航控制系统的示例。实际应用中,你可能需要根据具体需求对车辆模型、雷达模型以及控制器进行更详细的配置和优化。希望这些信息能帮助你开始构建自己的ACC系统!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值