基于 matlab实现KPCA核主成分分析 数据降维 注释清晰

基于 matlab实现KPCA核主成分分析 数据降维 注释清晰
1.用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征
2.直接替换excel数据即可用
3.附赠案例数据 可直接运行
在这里插入图片描述
在这里插入图片描述


核主成分分析(Kernel Principal Component Analysis, KPCA)是一种非线性降维技术,它通过将数据映射到高维特征空间中,然后在该空间中执行传统的主成分分析(PCA)。KPCA能够捕捉数据中的非线性结构,从而提供更有效的降维。

下面是一个基于MATLAB实现KPCA的示例代码,并附有详细的注释,帮助你理解每一步的操作。

示例代码

function kpca_example()
    % 加载或生成数据集
    % 这里使用一个简单的二维数据集作为示例
    rng(0); % 设置随机种子以确保结果可重复
    data = generate_sample_data();

    % 数据可视化
    figure;
    scatter(data(:,1), data(:,2));
    title('Original Data');
    xlabel('Feature 1');
    ylabel('Feature 2');

    % 设置KPCA参数
    kernelType = 'rbf'; % 核函数类型:'linear', 'poly', 'rbf'
    gamma = 1; % RBF核的参数,仅当kernelType为'rbf'时使用
    numComponents = 2; % 要保留的主成分数量

    % 执行KPCA
    [transformedData, eigenvalues, eigenvectors] = kpca(data, kernelType, gamma, numComponents);

    % 可视化降维后的数据
    figure;
    scatter(transformedData(:,1), transformedData(:,2));
    title('Data after KPCA');
    xlabel('Principal Component 1');
    ylabel('Principal Component 2');
end

function data = generate_sample_data()
    % 生成一个简单的二维数据集,包含两个螺旋形的数据簇
    t = linspace(0, 4*pi, 100);
    x1 = cos(t) + randn(size(t)) * 0.1;
    y1 = sin(t) + randn(size(t)) * 0.1;
    x2 = 0.8 * cos(t + pi) + randn(size(t)) * 0.1;
    y2 = 0.8 * sin(t + pi) + randn(size(t)) * 0.1;

    data = [x1, y1; x2, y2];
end

function [transformedData, eigenvalues, eigenvectors] = kpca(X, kernelType, gamma, numComponents)
    % 计算核矩阵
    n = size(X, 1);
    K = compute_kernel_matrix(X, kernelType, gamma);

    % 中心化核矩阵
    one_n = ones(n) / n;
    K_centered = K - one_n * K - K * one_n + one_n * K * one_n;

    % 计算特征值和特征向量
    [eigenvectors, eigenvalues] = eigs(K_centered, numComponents, 'lm'); % 只取最大特征值对应的特征向量
    eigenvalues = diag(eigenvalues); % 将特征值转换为对角矩阵

    % 归一化特征向量
    for i = 1:numComponents
        eigenvectors(:,i) = eigenvectors(:,i) / sqrt(eigenvalues(i));
    end

    % 将数据投影到新的特征空间
    transformedData = K_centered * eigenvectors;
end

function K = compute_kernel_matrix(X, kernelType, gamma)
    % 计算核矩阵
    n = size(X, 1);
    K = zeros(n);

    switch kernelType
        case 'linear'
            K = X * X';
        case 'poly'
            d = 3; % 多项式核的阶数
            K = (X * X' + 1).^d;
        case 'rbf'
            for i = 1:n
                for j = 1:n
                    diff = X(i,:) - X(j,:);
                    K(i,j) = exp(-gamma * sum(diff.^2));
                end
            end
        otherwise
            error('Unsupported kernel type');
    end
end

代码解释

主函数 kpca_example
  • 加载或生成数据集generate_sample_data 函数生成一个简单的二维数据集,包含两个螺旋形的数据簇。
  • 数据可视化:使用 scatter 函数绘制原始数据。
  • 设置KPCA参数:选择核函数类型(线性、多项式、RBF),并设置相关参数。
  • 执行KPCA:调用 kpca 函数进行核主成分分析。
  • 可视化降维后的数据:使用 scatter 函数绘制降维后的数据。
数据生成函数 generate_sample_data
  • 生成一个简单的二维数据集,包含两个螺旋形的数据簇,用于演示KPCA的效果。
核主成分分析函数 kpca
  • 计算核矩阵:根据选择的核函数类型(线性、多项式、RBF)计算核矩阵。
  • 中心化核矩阵:对核矩阵进行中心化处理,使其均值为零。
  • 计算特征值和特征向量:使用 eigs 函数计算核矩阵的最大特征值及其对应的特征向量。
  • 归一化特征向量:将特征向量归一化。
  • 将数据投影到新的特征空间:将原始数据投影到新的特征空间,得到降维后的数据。
核矩阵计算函数 compute_kernel_matrix
  • 根据选择的核函数类型(线性、多项式、RBF)计算核矩阵。对于RBF核,需要指定参数 gamma

注意事项

  1. 核函数的选择:不同的核函数适用于不同类型的数据。RBF核通常适用于非线性数据,而线性核适用于线性数据。
  2. 参数调整:核函数的参数(如RBF核的 gamma 参数)需要根据具体数据进行调整,以获得最佳效果。
  3. 特征选择:在实际应用中,可以根据特征值的大小选择保留的主成分数量,以达到降维的目的。

这个示例代码提供了一个基本框架,你可以根据具体需求进一步优化和扩展。希望这能帮助你理解如何在MATLAB中实现KPCA进行数据降维。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值