LSTM 与 Transformer 强强联合,时间序列预测迎来大突破!

融合 LSTM 与 Transformer 进行时间序列分析,作为当下领域的创新探索方向,近年来成果斐然。它们能够精准挖掘时间序列数据中的复杂模式与趋势,有效应对数据中的噪声干扰,极大提升预测的准确性与稳定性。

例如,Transformer 与 LSTM 结合用于车辆轨迹预测,提出结合二者的混合模型,快速处理时空特征,具有巨大潜力。此外,该融合模型的搭建过程并不繁琐,且能与其他辅助模型协同工作,在诸如智能电网预测电子交易预测等各类时间序列相关的下游任务中,显著优化模型性能,大幅提高预测精度。

我整理了10篇关于融合时序的相关论文,全部论文PDF版可以关注工棕号{顶会攻略}

回复  “融合时序”  即可领取

2.探索 Transformer 增强 LSTM 在轨迹预测中的时间和空间特征学习

文章解析:

论文将 Transformer 与 LSTM 结合用于车辆轨迹预测,提出结合二者的混合模型,处理时空特征。经实验对比基准模型,成功展现了该结合方式的潜力,为后续研究提供方向。

创新点:

1.提出结合 LSTM 时间编码与 Transformer 捕捉车辆间复杂交互的混合模型,用于车辆轨迹预测。

2.利用基于网格的掩码散射机制处理相邻车辆的空间轨迹特征。

3.探索 Transformer 增强 LSTM 框架在轨迹预测中的可行性,为改进模型提供新思路。

2.智能电网启动策略的时间序列数据深度分析:一种Transformer-LSTM-PSO模型方法

文章解析:

论文针对智能电网启动场景分析和预测的难题,提出 Transformer-LSTM-PSO 模型。通过结合 Transformer 的自注意力机制、LSTM 的时间序列建模能力和 PSO 的参数优化特性,利用多数据集实验验证,该模型在预测精度和效率上优于传统模型。

创新点:

1.创新地提出 Transformer-LSTM-PSO 混合模型,有效融合三者优势,提升电网启动预测的准确性和效率。

2.深入分析电网数据时间属性,在时间序列预测上取得进展,能更精准预测电网运行趋势。

3.为智能电网启动策略研究提供新的方法框架,模型具有良好扩展性,适用于未来电网发展。

全部论文PDF版可以关注工棕号{顶会攻略}

回复  “融合时序”  即可领取

3.用于电子交易的 Transformer 与 LSTM

文章解析:

论文对比基于 Transformer 和 LSTM 的模型在金融时间序列预测任务中的表现,利用币安交易所的高频限价订单簿数据,进行多任务实验。发现 Transformer 在绝对价格预测有有限优势,LSTM 在价格差异和价格变动预测中表现更优,还提出新模型 DLSTM。

创新点:

1.系统性对比基于 Transformer 和 LSTM 的模型在金融预测任务中的表现,为模型选择提供依据。

2.提出结合 LSTM 和时间序列分解方法的 DLSTM 模型,提升价格变动预测性能。

3.设计Transformer 新架构以适应价格变动预测任务,探索 Transformer 在该领域的应用。

4.基于两步 LSTM 和 Transformer 的 CT 扫描时空特征学习

文章解析:

论文针对 CT 扫描图像分辨率和切片数量不一致问题,提出基于两步法的模型。先通过肺面积估计选择切片训练 2D 模型,再用 LSTM 和 Swin Transformer 学习时空特征,实验证明该方法有效。

创新点: 

1.提出基于肺面积估计的切片选择策略,提升训练数据质量。

2.构建结合 LSTM 和 Transformer 的两步法模型,学习时空特征,避免过拟合。

3.发现两步法中 LSTM 模型假阴性率低,Swin 模型假阳性率低,为模型集成提供依据。

全部论文PDF版可以关注工棕号{顶会攻略}

回复 “小样本机器” 即可领取

AI学习交流群来啦!

欢迎大家加入AI学习群一起交流~这里会实时更新AI领域最新动态、顶会资讯等信息~

### LSTM 结合 Transformer 在故障诊断中的应用 #### 应用背景优势 将LSTMTransformer相结合应用于故障诊断能够充分利用两者各自的优势。Transformer擅长捕捉全局依赖关系,而LSTM则善于处理时间序列数据并记忆长期依赖特性。因此,在故障诊断场景下,这种组合可以有效提升模型的表现力和准确性[^4]。 #### 实现流程概述 为了实现这一目标,通常会按照如下方式进行架构设计: 1. **预处理阶段** - 收集来自多个传感器的时间序列数据作为输入源。 - 对这些原始信号执行必要的清理工作,比如去除噪声、填补缺失值等操作。 2. **特征提取层 (Transformer)** - 使用自注意力机制来分析各个时刻之间可能存在的复杂交互模式。 - 通过多头注意机制增强对于不同类型故障敏感特性的感知能力。 3. **时序建模层 (LSTM)** - 将经过变换器编码后的向量序列送入LSTM单元内继续深入挖掘随时间变化的趋势规律。 - 经过上述两步处理得到的结果会被传递给全连接网络或其他适合做最后判断的部分完成具体的类别归属任务。 ```matlab % MATLAB伪代码示例 function [predictedLabels, accuracy] = transformer_lstm_diagnosis(inputData, labels) % 数据准备... % 构造Transformer部分 encoderLayer = ...; % 定义Encoder Layer % 输入到Transformer中获取高级表示 transformedFeatures = forward(encoderLayer, inputData); % 初始化LSTM网络 lstmNet = ...; % 将转换后的特征喂给LSTM进行训练/推理 hiddenStates = predict(lstmNet, transformedFeatures); % 添加顶层用于分类 classifier = fullyConnectedLayer(numClasses); predictedScores = forward(classifier, hiddenStates); [~, predictedLabels] = max(predictedScores,[],2); accuracy = sum(predictedLabels == labels)/numel(labels)*100; end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值