YOLO11改进|卷积篇|引入全维动态卷积ODConv

在这里插入图片描述

一、【ODConv】全维动态卷积

1.1【ODConv】卷积介绍

在这里插入图片描述

ODConv利用一种全新的多维注意力机制和并行策略,在任何卷积层沿内核空间的四个维度学习卷积内核的注意力。 作为常规卷积的替代品,ODConv 可以插入到许多 CNN 架构中。也就是说是的即插即用的模块。通过下图可以看到,新引入的三个注意力,分别沿空域维度、输入通道维度以及输出通道维度
在这里插入图片描述
以下是ODConv的工作流程图以及简单流程介绍

  1. 输入处理阶段:
    GAP (Global Average Pooling):对输入特征 x 进行全局平均池化,生成一个全局的特征向量。此操作减少了空间维度,保留了通道信息的
### 关于 YOLO V11 Tiny 的版本介绍 YOLO V11 是 Ultralytics 推出的一个高性能目标检测框架,其设计旨在提升速度与精度之间的平衡[^3]。Tiny 版本通常被用于轻量级场景,在保持一定性能的同时减少计算开销和内存占用。 #### YOLO V11 Tiny 的特点 YOLO V11 Tiny 是 YOLO V11 家族中的一个简化版模型,主要针对资源受限环境进行了优化。它通过降低网络复杂度来实现更快的推理速度,同时尽可能保留较高的检测精度。具体来说: - **参数数量较少**:相比标准版 YOLO V11,Tiny 版本减少了卷积层的数量以及每层的滤波器数目。 - **更少的 FLOPs (浮点运算次数)**:这使得模型更适合部署在嵌入式设备或者移动平台上运行。 - **快速推理时间**:由于结构更加紧凑,因此能够提供更低延迟的服务响应能力。 这些特性使 YOLO V11 Tiny 成为了边缘计算领域内的理想解决方案之一[^1]。 --- ### 如何下载并配置 YOLO V11 Tiny? 要获取 YOLO V11 Tiny 模型及其配套工具链,请按照如下方式操作: #### 步骤 A: 获取预训练权重文件 访问官方仓库或其他可信来源链接下载对应版本的 `.pt` 或其他格式权值文档。例如可以从 GitHub 上找到相关发布页面进行提取。 #### 步骤 B: 创建自定义 YAML 配置文件 如果需要调整输入尺寸、类别数或者其他超参设置,则可以参照模板创建专属自己的 `yaml` 文件。比如下面展示了一个简单的例子供参考: ```yaml # Example configuration file for training a custom dataset with YOLOV11-Tiny. train: ./data/train/images/ val: ./data/validation/images/ names: 0: dog 1: cat nc: 2 # Number of classes depth_multiple: 0.33 # Model depth multiple factor used in tiny variant width_multiple: 0.5 # Channel width scale factor applied specifically within this context here as well according to given information from citation two above [^2]. ``` 上述代码片段展示了如何利用通道宽度比例因子(即 `width_multiple=0.5` 对应于 YOLOv11S),从而构建适合特定应用场景的小型化神经网络体系架构。 #### 步骤 C: 初始化模型实例 加载已有的预训练权重或将新生成好的空白状态保存下来作为后续微调的基础起点。以下是 Python 中初始化过程的一段示范脚本: ```python from ultralytics import YOLO model_path = 'path/to/yolov11_tiny.pt' model = YOLO(model_path) results = model.train(data='ultralytics/cfg/models/11/yolo11_dog.yaml', epochs=100, imgsz=640) ``` 这里我们假设路径变量指向实际存在的本地存储地址;另外还指定了数据集描述符路径以便启动正式的学习流程[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值