一、【ODConv】全维动态卷积
1.1【ODConv】卷积介绍
ODConv利用一种全新的多维注意力机制和并行策略,在任何卷积层沿内核空间的四个维度学习卷积内核的注意力。 作为常规卷积的替代品,ODConv 可以插入到许多 CNN 架构中。也就是说是的即插即用的模块。通过下图可以看到,新引入的三个注意力,分别沿空域维度、输入通道维度以及输出通道维度
以下是ODConv的工作流程图以及简单流程介绍
- 输入处理阶段:
GAP (Global Average Pooling):对输入特征 x 进行全局平均池化,生成一个全局的特征向量。此操作减少了空间维度,保留了通道信息的