YOLO11改进|卷积篇|引入SPDConv

在这里插入图片描述

一、【SPD】卷积

1.1【SPD】卷积介绍

在这里插入图片描述

SPD-Conv卷积的结构图如下,下面我们简单分析一下其处理过程和优势

  • 处理过程:
  • 输入特征图 (a):输入特征图的尺寸为 𝑆×𝑆×𝐶1,其中 𝑆是特征图的空间分辨率,𝐶1是通道数。如图 (a) 所示,这个输入特征图会被送入 SPD-Conv 模块进行处理。
  • Space-to-Depth 操作 (b, c):图 (b) 进行的是 Space-to-Depth 操作,将原来的空间维度压缩,同时将多个像素点的值重新映射到深度维度(即通道维度)。通过这一操作,原本 𝑆×𝑆×𝐶1的特征图被拆分成多个较小的区域,每个区域的空间维度减少为 𝑆/2×𝑆/2,通道数则增加为 4𝐶1(如图 © 所示)。具体过程是,将特征图按像素间隔进行拆分,将这些拆分的结果按通道方向堆叠起来。
  • 特征拼接与合并 (d):图 © 显示了经过 Space-to-Depth 操作后,特征图被拆分为四个分块。这些特征块通过通道维度进行拼接,合并成一个具有 4𝐶1通道的特征图,空间维度变成了 𝑆/2×𝑆/2
  • 卷积操作 (e):合并后的特征图会通过卷积操作(图 (e)),在此过程中使用的卷积核步长为 1,确保空间维度保持不变。最终的输出特征图为 𝑆/2×𝑆/2×𝐶2,其中 𝐶2是经过卷积操作后的输出通道数。
  • 优势:
  • 多尺度特征提取:Space-to-Depth 操作通过压缩空间维度并增加通道数,使得特征图可以以较小的空间分辨率同时处理更多的特征。这种方式有助于捕捉更多局部的细节信息,并保留全局上下文。
  • 减少计算成本:相较于直接在大分辨率下执行复杂的卷积操作,通过 Space-to-Depth 操作,SPD-Conv 将空间维度减少,可以有效减少计算量,同时通过增加通道数确保特征表达的丰富性。
  • 提高特征表达能力:通过将原本分散在空间中的特征重新映射到深度维度,SPD-Conv 可以更好地聚合空间信息,从而提升网络对特征的表达能力。
  • 更好的并行计算:由于空间维度被缩小,而通道数增大,这种结构更适合在现代硬件(如 GPU)上进行并行计算,有利于提升计算效率。
    在这里插入图片描述

1.2【SPD】核心代码

import torch
import torch.nn as nn

__all__ = ['SPDConv']


def autopad(k, p=None, d=1):  # kernel, padding, dilation

    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class SPDConv(nn.Module):
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        c1 = c1 * 4
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
        return self.act(self.conv(x))

二、添加【SPD】卷积

2.1STEP1

首先找到ultralytics/nn文件路径下新建一个Add-module的python文件包【这里注意一定是python文件包,新建后会自动生成_init_.py】,如果已经跟着我的教程建立过一次了可以省略此步骤,随后新建一个SPD.py文件并将上文中提到的注意力机制的代码全部粘贴到此文件中,如下图所示在这里插入图片描述

2.2STEP2

在STEP1中新建的_init_.py文件中导入增加改进模块的代码包如下图所示在这里插入图片描述

2.3STEP3

找到ultralytics/nn文件夹中的task.py文件,在其中按照下图添加在这里插入图片描述

2.4STEP4

定位到ultralytics/nn文件夹中的task.py文件中的def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)函数添加如图代码,【如果不好定位可以直接ctrl+f搜索定位】

在这里插入图片描述

三、yaml文件与运行

3.1yaml文件

以下是添加【SPD】卷积在Backbone中的yaml文件,大家可以注释自行调节,效果以自己的数据集结果为准

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, SPDConv, [128]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, SPDConv, [256]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, SPDConv, [512]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, SPDConv, [1024]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

以上添加位置仅供参考,具体添加位置以及模块效果以自己的数据集结果为准

3.2运行成功截图

在这里插入图片描述

OK 以上就是添加【SPD】卷积的全部过程了,后续将持续更新尽情期待

在这里插入图片描述

YOLOv8是目标检测领域中的一种经典算法,其以速度快和准确性高而受到广泛关注。在YOLOv8的主干网络上,我们可以进行一些改进来提升其在低照度环境下的性能。 低照度条件下,图像通常会受到噪声的影响,目标的细节和边缘信息可能会被模糊或者丢失,导致目标检测精度受到影响。为了克服这个问题,我们可以引入低照度增强网络来对输入图像进行预处理。低照度增强网络可以根据图像的特点对其进行自适应地增强,提升图像的亮度和对比度,减少噪声的干扰。这样可以使得图像中的目标更加清晰可见,有助于提高YOLOv8的检测精度。 在主干网络的选择方面,我们可以考虑使用Pe-YOLO来替代YOLOv8原有的主干网络。Pe-YOLO是一种经过优化的主干网络,其在保持YOLOv8原有速度优势的同时,能够提升在低照度环境下目标检测的性能。Pe-YOLO采用了一些先进的网络结构和设计技巧,例如注意力机制和残差连接,使得主干网络具有更好的图像特征提取能力和抗干扰能力。 通过将Pe-YOLO用于YOLOv8的主干网络,可以加强对低照度环境下目标的探测能力,提升检测的准确率和鲁棒性。此外,我们还可以对Pe-YOLO进行训练,使其能够更好地适应低照度条件下目标的特征,进一步加强目标检测的效果。 总结而言,yolov8改进中的主干,我们可以通过引入低照度增强网络和选择Pe-YOLO作为主干网络来提升在低照度环境下的目标检测性能。这些改进可以有效地减少噪声干扰,提高目标的可见性,在大幅度提升速度的同时,保证准确率和鲁棒性,使得yolov8在低照度条件下仍能取得出色的检测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值