深度学习——第4.3章 深度学习的数学基础

本文详细介绍了深度学习中常用的指数函数和对数函数,包括它们的定义、图形、导数及在机器学习中的应用。特别讨论了Sigmoid和Softmax函数的性质及其导数,强调了它们在神经网络和概率表示中的重要性。通过对指数和对数的理解,有助于更好地掌握深度学习的数学基础。
摘要由CSDN通过智能技术生成

第4章 深度学习的数学基础

目录

4.7 指数函数和对数函数

4.7 指数函数和对数函数

深度学习经常会用到Sigmoid函数和Softmax函数,这些函数是通过包含exp(x)的指数函数创建的。后面我们需要求解这些函数的导数。

4.7.1 指数

指数是一个基于“乘以某个数多少次”,即乘法的次数的概念,并且不只是自然数,它还可以扩展到负数和实数。

在这里插入图片描述

图4-23 指数的定义与公式

指数函数的定义是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曲入冥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值