深度学习——第10章 优化神经网络:如何防止过拟合(DNN)

本文详细介绍了神经网络中防止过拟合的正则化方法,包括L1、L2正则化,Dropout正则化以及其他有效技巧。通过正则化,可以提高模型的泛化能力,避免过拟合导致的训练样本拟合过度。L2正则化通过在损失函数中添加权重的平方和,使模型倾向于较小的权重。Dropout则在训练时随机关闭部分神经元,减少神经元间的依赖,增强模型的鲁棒性。此外,数据增强和早停策略也是防止过拟合的有效手段。
摘要由CSDN通过智能技术生成

第10章 优化神经网络:如何防止过拟合(DNN)

目录

10.1 什么是过拟合

10.2 L1、L2正则化

10.3 L2正则化的物理解释

10.4 Dropout正则化

10.5 其它正则化技巧

10.6 总结

上一课,我们一步步搭建了一个深层神经网络来实现图片的分类。结果显示,随着网络层数加深,隐藏层数增加,网络性能会有所提升。但是,单纯地通过增加网络层数也不一定能取得很好的效果,且模型容易发生过拟合。

本节将主要讨论神经网络中的过拟合问题以及如何避免过拟合。

10.1 什么是过拟合

任何机器学习模型,包括神经网络都可能存

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曲入冥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值