深度学习——第10章 优化神经网络:如何防止过拟合(DNN)
本文详细介绍了神经网络中防止过拟合的正则化方法,包括L1、L2正则化,Dropout正则化以及其他有效技巧。通过正则化,可以提高模型的泛化能力,避免过拟合导致的训练样本拟合过度。L2正则化通过在损失函数中添加权重的平方和,使模型倾向于较小的权重。Dropout则在训练时随机关闭部分神经元,减少神经元间的依赖,增强模型的鲁棒性。此外,数据增强和早停策略也是防止过拟合的有效手段。
摘要由CSDN通过智能技术生成