%2017/8/22日 星期二
%工程北629
%功能:对复杂的信号进行傅里叶分解,得到频谱图。以1sin(2*pi*1*t)和0.5sin(2*pi*5*t)合成的信号为例。
%思想:傅里叶变换
%说明:振幅的大小是变化的,当N 从128,256,512,1024变化时,其振幅是逐渐增大,采样点数越多,越接近原始振幅。
clear all
clc
%输入信号
N = 256; %数据个数 数据点数为256个数据点,从下面的x中按照采样间隔0.02s 得到的。
dt = 0.02; %采样间隔 数据总的时间长度 = T = N*dt = 256*dt = 5.12秒
n = 0:N-1; %序号序列 n是0、1、2、3、4......253、254、255
t = n*dt; %时间序列 t是0.00、0.02、0.04、0.06、0.08......5.06、5.08、5.10
%信号处理
x = 1*sin(2*pi*1*t) + 0.5*sin(2*pi*5*t); %A = 1,fc = 1Hz信号 和 A = 0.5,fc = 5Hz信号的合成信号。合成信号最高频率是5Hz
%m = floor(N/2) + 1; %改变m的值可以看到不同的变化 m = N/2 + 1 = 128+1=129
m = N; %分解ab的最大序号值,为分解的N/2个参数再加参数a(0)
%m = 2*N;
%m = 3*N;
a = zeros(1,m); %系数ak,ak总个数是129个。初始化ak==0
b = zeros(1,m); %系数bk,bk总个数是129个。初始化bk
例3-1 将振幅为1的1Hz正弦波和振幅为0.5的5Hz正弦波相加后进行傅里叶变换。——傅里叶变换理解
最新推荐文章于 2024-03-05 11:45:33 发布
该博客通过MATLAB演示了对1Hz和5Hz正弦波相加后的信号进行傅里叶变换的过程,探讨了离散傅里叶变换在数字信号处理中的应用,强调了非周期离散信号在频域的连续周期特性,并展示了不同采样点数对结果的影响。
摘要由CSDN通过智能技术生成