引言
近年来,大型语言模型(LLMs)技术飞速发展,并逐步应用于多个行业场景。与此同时,企业和个人对本地化部署 LLM 的需求也日益增长,以期获得更高的隐私性、可控性和低延迟体验。Ollama 作为一款开源的跨平台大模型部署工具,凭借其高效的私有化部署能力以及对 DeepSeek 等先进模型的广泛支持,受到开发者和技术爱好者的青睐。然而,在追求技术便捷性的同时,安全风险往往被忽视,导致潜在的网络和数据安全隐患。
当前,许多用户在本地部署 Ollama 时,通常未修改默认配置,使其 Web 服务端口(默认 11434)直接暴露于公网,并且缺乏身份验证机制。这一安全漏洞可能引发严重后果,包括未授权访问、数据泄露、算力滥用、模型窃取、系统入侵等问题,甚至可能导致企业或个人业务遭受不可挽回的损失。此外,Ollama 近期被披露的多个安全漏洞(如 CVE-2024-37032、CVE-2024-39722、CVE-2024-28224 等)更进一步加剧了此类风险,使其成为潜在攻击目标。
在 LLMs 本地化部署日益普及的背景下,加强安全意识、完善访问控制机制、优化身份认证手段已成为不可忽视的重要议题。如何在保障 LLMs 易用性的同时,构建安全稳健的私有化部署方案,是当前大模型技术应用发展面临的关键挑战之一。
警惕 Ollama 本地部署的安全隐患:
模型与数据面临多重风险
在本地部署 DeepSeek 等大模型时,Ollama 会默认启动 Web 服务,并开放 11434 端口,且不设任何鉴权机制。这意味着,如果该服务直接暴露在公网环境,可能会带来严重的安全隐患,包括未授权访问、数据泄露、攻击者利用已知漏洞进行入侵,甚至服务器被远程控制、资源被恶意占用等问题。以下是主要风险点解析:
⚠️ 1. 任何人都能访问?模型与数据安全堪忧
由于默认无身份验证,任何人都可以轻松访问 Ollama 服务,而无需授权。这不仅意味着攻击者能够随意调用模型 API,获取模型信息,还可能通过恶意指令直接操作模型文件,例如删除、窃取甚至篡改数据。如果模型涉及商业机密或高价值行业应用,未经加密的模型文件极易被复制和盗卖,从而造成无法估量的经济损失。
📡 2. 数据泄露:敏感信息或被轻松获取
Ollama 的 API 接口可能成为数据泄露的突破口。例如,通过 /api/show,攻击者可以提取模型的 License 及其他敏感数据。同时,其他接口可能允许访问部署环境中的关键信息,包括用户对话记录、训练数据等。如果通信过程未加密,这些数据极有可能被黑客监听或截取,导致隐私信息外泄。
🔓 3. 利用已知漏洞,攻击者可完全掌控服务
Ollama 曾曝出多项安全漏洞(CVE-2024-39720、39722、39719、39721),攻击者可以利用这些漏洞直接调用接口,进行数据投毒、参数窃取、恶意文件上传,甚至删除关键组件。这些攻击不仅会破坏模型的完整性和稳定性,还可能导致核心算法受损,甚至让整个 AI 服务瘫痪。
🖥️ 4. 远程代码执行:服务器或成为黑客跳板
Ollama 本身可能存在未被披露的安全漏洞,一旦被利用,攻击者可以远程执行恶意代码,直接获取服务器控制权限。受感染的服务器可能被用来发起更大规模的网络攻击,甚至成为僵尸网络的一部分,带来严重的安全威胁。
⚖️ 5. 法律风险:未授权使用可能引发法律纠纷
如果未经授权访问或滥用他人部署的 Ollama 服务,可能违反相关法律法规。例如,窃取或篡改他人模型数据、利用漏洞进行恶意操作等行为,均可能导致法律责任追究,甚至面临刑事处罚。
🎛️ 6. 资源滥用:你的 GPU 可能正在“为他人打工”
在未进行访问限制的情况下,攻击者可以批量扫描并连接开放的 Ollama 服务,利用服务器的 GPU 计算资源执行自己的任务。这可能导致服务器资源被大规模占用,影响正常业务运行,甚至被黑客用于训练恶意 AI 模型,使服务器沦为“黑产血汗工厂”。
Ollama 已披露的安全漏洞清单
结论
Ollama 作为一款高效的大模型本地部署工具,在提升计算便捷性的同时,也可能面临一系列安全挑战,如未授权访问、数据泄露、远程代码执行及模型窃取等风险,这些威胁可能影响系统的安全性与稳定性。因此,为确保 Ollama 在本地环境中的安全运行,可以综合采用多种安全防护措施,以降低潜在风险并提升系统稳健性。
首先,可以通过限制 Ollama 的监听范围,使 11434 端口仅允许本地访问,并定期检查端口状态,以防止端口意外暴露。此外,配置防火墙规则,针对公网接口实施双向端口过滤,有助于阻断 11434 端口的入站与出站流量,从而减少可能的攻击面。
在访问控制方面,可以启用 API 密钥管理机制,并结合 IP 白名单或零信任架构,以确保仅受信任的设备能够访问关键接口。同时,定期轮换 API 密钥并限制调用频率,有助于进一步降低因凭据泄露或滥用带来的安全风险。
在权限管理层面,可以通过禁用或严格限制高风险操作接口(如 push、delete、pull 等),以减少潜在的滥用风险。此外,对 chat 接口的调用频率施加限制,有助于防范 DDoS 攻击,提高系统可用性。
与此同时,保持 Ollama 版本的及时更新,定期修复已知安全漏洞,也是提升系统安全性的关键措施。通过及时应用安全补丁,可以降低因漏洞利用带来的安全隐患,确保系统始终处于受保护状态。
综上所述,尽管 Ollama 在本地大模型部署方面提供了较高的灵活性和便利性,但其安全性仍需得到充分重视。通过合理的访问控制、端口管理、权限限制及漏洞修复等多层防护措施,可以有效降低潜在安全风险,在保障系统易用性的同时,构建更加安全、稳定的部署环境,为 LLM 的本地化应用提供有力支持。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓