大模型入门指南 - Prompt Engineering:小白也能看懂的“提示词工程”全解析

当你说“随便弄杯喝的”,大模型可能端出板蓝根泡咖啡的黑暗料理;但当你精准描述“少冰三分糖的杨枝甘露加脆波波”,它才会秒变资深奶茶师。这背后的本质差异,在于是否用提示词搭建起“人类需求”与“机器语言”的精准翻译通道。

就像找Tony老师理发:“剪短点”可能收获狗啃刘海,而“发尾剪3厘米不打薄,刘海要空气感”才能保住颜值。大模型同理,模糊指令必然导致“翻车美学”,结构化提示词才是解锁生产力的密钥。

图片

一、概念解读

Prompt Engineering(提示词工程)到底是个啥?提示词工程通过设计优化输入提示词,引导大模型生成更精准的答案,类似于给大模型装上“人类语言翻译器”。

传统的模糊指令如“写首诗” → AI可能生成《量子力学的十四行抒情》,而结构化提示如“用李白风格写七夕情诗,每句含‘星河’意象” → 输出浪漫且符合预期的诗句。

提示词工程让普通用户无需懂代码,就能通过自然语言“编程”大模型,被称为“非程序员与大模型对话的API接口”。

图片

Prompt(提示词)如何构成?一个完整的Prompt应该包含清晰的指示、相关的上下文、有助于理解的例子、明确的输入以及期望的输出格式描述。

图片

1. 指示(Instructions) - 关键词:任务描述(“明确KPI”)

这是提示词的灵魂,相当于给大模型下达“工作订单”。模糊指令如“写篇文章”会让大模型陷入迷茫,而精准任务描述能直接锁定输出方向。

案例:“撰写一篇面向职场新人的时间管理指南,包含3个实用工具和真实案例”  

2. 上下文(Context) - 关键词:背景信息(“装导航地图”)

通过上下文背景信息能框定大模型的认知边界。当你说“分析销量”,而没有在上下文限制领域,大模型可能从宇宙大爆炸讲起。

案例:“你是一家母婴电商的数据分析师,需对比2024年Q1-Q3纸尿裤品类在长三角地区的销售数据” 

3. 例子(Examples) - 关键词:示范学习(“参考答案”)

人类需要范文指导,大模型也需要案例锚定输出标准。

案例:“请用小红书爆款笔记风格写防晒霜推荐,参考示例:  标题:今夏晒不黑的秘密被我挖到了!  正文:姐妹们!这个SPF50+的防晒霜居然能当素颜霜用...”  

4. 输入(Input) - 关键词:数据输入(“加工原料”)

大模型不是全知上帝,也有幻觉问题,经常性已读乱回。结构化输入数据能避免“凭空瞎编”。

案例:“根据以下用户调研数据生成报告:  - 受访者:500名25-35岁一线城市白领  - 痛点TOP3:通勤时间长(68%)、会议低效(55%)、加班文化(49%)”  

5. 输出(Output)- 关键词:结果格式(“设计图纸”)

不规定输出形式,AI可能把周报写成《西游记》降妖报告。格式指令是交付质量的保险杠。

案例:“用Markdown表格对比3款项目管理软件,包含价格、核心功能、适用团队规模三列”  

图片

二、技术实现

Prompt Engineering(提示词工程)如何进行技术实现?四大要素构成提示词工程的"黄金齿轮组":角色定义划定专业领域 → 任务拆解提供执行路径 → 场景限定框定输出维度 → 示例教学锚定风格标准。

图片

1. 角色定义划定专业领域 

通过身份设定框定AI的思考边界,让输出更专业。用于规避通用型废话,提升行业针对性,适用场景:法律文书生成、医疗报告撰写、营销文案创作。

【角色】你现在是拥有10年经验的母婴电商运营  

【任务】分析2024年Q3纸尿裤销售数据  

【要求】用小红书爆款笔记风格总结增长亮点  

2. 任务拆解提供执行路径

用“动词+限定词”拆解复杂任务,防止AI跑偏。通过CoT思维链将复杂任务拆解,任务完成准确率大幅提升。

【任务】按照下面步骤生成数据分析报告

第一步:统计2024年1-6月长三角地区护肤品销售额TOP3品类  

第二步:对比各品类复购率与客单价关系  

第三步:用柱状图+200字总结市场趋势  

3. 场景限定框定输出维度

通过时空背景限定输出范围,避免出现已读乱回等不相关推荐。适用场景:个性化推荐、地域化内容生成。

【背景】用户为25-35岁一线城市上班族,通勤时间超1.5小时  

【要求】推荐3款适合地铁上阅读的电子书,每本附50字推荐理由 

4. 示例教学锚定风格标准

用具体案例锚定输出标准,能精准把控语言风格(网络热梗/专业术语),按照格式示范(标题+正文+表情包布局)进行输出。

【任务】请模仿以下风格写防晒霜文案:  标题:今夏晒不黑的秘密被我挖到了!  正文:姐妹们!这个SPF50+的防晒霜居然能当素颜霜用...  

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值