当你说“随便弄杯喝的”,大模型可能端出板蓝根泡咖啡的黑暗料理;但当你精准描述“少冰三分糖的杨枝甘露加脆波波”,它才会秒变资深奶茶师。这背后的本质差异,在于是否用提示词搭建起“人类需求”与“机器语言”的精准翻译通道。
就像找Tony老师理发:“剪短点”可能收获狗啃刘海,而“发尾剪3厘米不打薄,刘海要空气感”才能保住颜值。大模型同理,模糊指令必然导致“翻车美学”,结构化提示词才是解锁生产力的密钥。
一、概念解读
Prompt Engineering(提示词工程)到底是个啥?提示词工程通过设计优化输入提示词,引导大模型生成更精准的答案,类似于给大模型装上“人类语言翻译器”。
传统的模糊指令如“写首诗” → AI可能生成《量子力学的十四行抒情》,而结构化提示如“用李白风格写七夕情诗,每句含‘星河’意象” → 输出浪漫且符合预期的诗句。
提示词工程让普通用户无需懂代码,就能通过自然语言“编程”大模型,被称为“非程序员与大模型对话的API接口”。
Prompt(提示词)如何构成?一个完整的Prompt应该包含清晰的指示、相关的上下文、有助于理解的例子、明确的输入以及期望的输出格式描述。
1. 指示(Instructions) - 关键词:任务描述(“明确KPI”)
这是提示词的灵魂,相当于给大模型下达“工作订单”。模糊指令如“写篇文章”会让大模型陷入迷茫,而精准任务描述能直接锁定输出方向。
案例:“撰写一篇面向职场新人的时间管理指南,包含3个实用工具和真实案例”
2. 上下文(Context) - 关键词:背景信息(“装导航地图”)
通过上下文背景信息能框定大模型的认知边界。当你说“分析销量”,而没有在上下文限制领域,大模型可能从宇宙大爆炸讲起。
案例:“你是一家母婴电商的数据分析师,需对比2024年Q1-Q3纸尿裤品类在长三角地区的销售数据”
3. 例子(Examples) - 关键词:示范学习(“参考答案”)
人类需要范文指导,大模型也需要案例锚定输出标准。
案例:“请用小红书爆款笔记风格写防晒霜推荐,参考示例: 标题:今夏晒不黑的秘密被我挖到了! 正文:姐妹们!这个SPF50+的防晒霜居然能当素颜霜用...”
4. 输入(Input) - 关键词:数据输入(“加工原料”)
大模型不是全知上帝,也有幻觉问题,经常性已读乱回。结构化输入数据能避免“凭空瞎编”。
案例:“根据以下用户调研数据生成报告: - 受访者:500名25-35岁一线城市白领 - 痛点TOP3:通勤时间长(68%)、会议低效(55%)、加班文化(49%)”
5. 输出(Output)- 关键词:结果格式(“设计图纸”)
不规定输出形式,AI可能把周报写成《西游记》降妖报告。格式指令是交付质量的保险杠。
案例:“用Markdown表格对比3款项目管理软件,包含价格、核心功能、适用团队规模三列”
二、技术实现
Prompt Engineering(提示词工程)如何进行技术实现?四大要素构成提示词工程的"黄金齿轮组":角色定义划定专业领域 → 任务拆解提供执行路径 → 场景限定框定输出维度 → 示例教学锚定风格标准。
1. 角色定义划定专业领域
通过身份设定框定AI的思考边界,让输出更专业。用于规避通用型废话,提升行业针对性,适用场景:法律文书生成、医疗报告撰写、营销文案创作。
【角色】你现在是拥有10年经验的母婴电商运营
【任务】分析2024年Q3纸尿裤销售数据
【要求】用小红书爆款笔记风格总结增长亮点
2. 任务拆解提供执行路径
用“动词+限定词”拆解复杂任务,防止AI跑偏。通过CoT思维链将复杂任务拆解,任务完成准确率大幅提升。
【任务】按照下面步骤生成数据分析报告
第一步:统计2024年1-6月长三角地区护肤品销售额TOP3品类
第二步:对比各品类复购率与客单价关系
第三步:用柱状图+200字总结市场趋势
3. 场景限定框定输出维度
通过时空背景限定输出范围,避免出现已读乱回等不相关推荐。适用场景:个性化推荐、地域化内容生成。
【背景】用户为25-35岁一线城市上班族,通勤时间超1.5小时
【要求】推荐3款适合地铁上阅读的电子书,每本附50字推荐理由
4. 示例教学锚定风格标准
用具体案例锚定输出标准,能精准把控语言风格(网络热梗/专业术语),按照格式示范(标题+正文+表情包布局)进行输出。
【任务】请模仿以下风格写防晒霜文案: 标题:今夏晒不黑的秘密被我挖到了! 正文:姐妹们!这个SPF50+的防晒霜居然能当素颜霜用...
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓