“Minimal Batch Adaptive Learning Policy Engine for Real-Time Mid-Price Forecasting in High-Frequency Trading”
论文地址:https://arxiv.org/pdf/2412.19372
摘要
高频交易(HFT)革新了现代金融市场,使得短期价格预测模型的重要性日益增加。本文介绍了一种新的中间价格预测方法,该方法基于纳斯达克的一级限价订单簿(LOB)数据,并特别分析了2022年9月至11月期间标准普尔500指数内的100只美国股票。我们在之前使用径向基函数神经网络(RBFNN)的研究基础上,引入了一个名为自适应学习策略引擎(ALPE)的新组件——这是一种基于强化学习(RL)的智能系统,专为无批次、实时的中间价格预测设计。RBFNN结合了基于减少杂化平均值(DI)和梯度下降(GD)的自动化特征重要性技术。通过采用自适应epsilon衰减来动态调整探索与利用之间的平衡,ALPE在预测准确性上超越了多种流行的机器学习(ML)和深度学习(DL)模型。
简介
高频交易(HFT)对现代金融市场至关重要,而短期价格预测因需应对高速度和复杂性的挑战,传统统计模型难以胜任。先前的研究展示了一种基于径向基函数神经网络(RBFNN)的策略,通过自动特征选择技术提高了中间价格预测的准确性,其效果优于传统手段。
在这篇文章中,我们介绍了一个新的强化学习(RL)框架,该框架能够根据市场动态调整预测策略,提供更加灵活的解决方案。我们进行了多种模型的比较实验,包括ARIMA、MLP、CNN、LSTM、GRU和RBFNN,并评估了RL模型在不同输入数据集和特征重要性技术下的表现。我们的研究主要贡献在于扩展了基准模型和股票样本的数量,探索了RL在利用HFT限价订单簿(LOB)数据进行价格预测中的潜力,展示了它在捕捉非线性关系方面的优势。
01方法
本文详细描述了ALPE模型的实验方法,涵盖了所使用的数据集、预处理技术、RL环境设置以及ALPE代理的架构。
通过与RBFNN、ARIMA、CNN、LSTM、GRU等模型进行对比,还包括了一些简单的基线回归模型,以全面评估ALPE的性能。
实验使用了三类输入特征集:MDI特征重要性、GD优化结果以及原始LOB数据,以确保比较的公正性。
评估过程中主要采用了均方误差(MSE)、均方根误差(RMSE)和相对均方根误差(RRMSE)作为性能指标。
预测目标
本研究聚焦于限价订单簿(LOB)中间价格的预测,作为衡量交易活动的一个指标。准确预测中间价格的变化对于理解大宗订单对市场价格的影响至关重要。我们使用事件回归模型DQR进行分析,目标是通过最小化预测误差来优化模型性能,并采用MSE、RMSE以及新提出的RRMSE作为评估标准,与其他基准模型如ARIMA、LSTM和GRU等进行了性能对比。
中间价格被定义为最佳买价与卖价的平均值。
RRMSE是指基于时间点t的相对均方根误差,实验中采取了基于事件而非采样的方法来进行。
我们的研究采用了面向事件的在线预测方法,涵盖了批量训练和无批量学习两种设置。参与比较的模型包括基线回归、ARIMA、MLP、CNN、LSTM、GRU和RBFNN,这些模型都在批量训练模式下运行;而新开发的ALPE模型则在无批量设置下工作。
为了保证评估的公平性,所有模型遵循滚动窗口实验协议,基于10个LOB状态进行训练,因为观察到每10个交易事件间会出现平稳与非平稳序列的交替现象。当减少用于训练的LOB状态数量时,其他竞争模型的性能显著下降。然而,ALPE模型虽然也按照相同的滚动窗口协议操作,但其窗口大小仅为1,仅依赖当前的LOB信息进行预测。