“FinSphere: A Conversational Stock Analysis Agent Equipped with Quantitative Tools based on Real-Time Database”
论文地址:https://arxiv.org/pdf/2501.12399
摘要
当前在金融领域应用的大语言模型面临两个主要限制:一是股票分析的深度不足,二是缺乏有效的客观评估标准。为解决这些问题,本文介绍了一种名为FinSphere的对话型股票分析代理,它由三个关键组件构成:Stocksis,这是一个经过行业专家精心策划的数据集,旨在提升LLM进行股票分析的能力;AnalyScore,一个用于系统化评估股票分析质量的框架;以及FinSphere本身,作为一款能够生成高质量股票分析报告的人工智能代理。研究表明,即使其他通用或特定领域的LLM以及现有的代理系统拥有实时数据访问权限和一定程度的指导,FinSphere在分析精度和实际运用效果上依然表现得更为出色。
简介
大型语言模型(LLMs)在自然语言处理任务中展现了卓越的能力,并且在金融领域得到了广泛应用。这些模型特别擅长于情感分析以及从非结构化的金融文本中提取有价值的信息。专门针对金融领域的LLMs,例如FinBERT、BloombergGPT和PIXIU,进一步增强了处理金融数据的能力。这些技术的进步推动了更为复杂的金融分析工具的发展,彻底改变了投资者与市场数据之间的互动模式。通过AI驱动的系统,零售投资者现在可以获取过去只有机构投资者才能获得的专业级金融分析服务。
随着LLM技术在股票分析中的应用不断深化,一些结合了高级语言能力和特定金融工具的增强型代理也应运而生。然而,这一领域仍然面临几个主要挑战:缺乏专为微调设计的数据集,以及缺少系统化的方法来评估这些模型的分析性能。此外,由于LLMs主要依赖历史数据进行训练,它们可能无法及时捕捉到金融市场中的实时动态变化。
为此,本文提出了三个核心模块以应对上述挑战:
- Stocksis:这是一个由行业专家精心策划的专用数据集,旨在提高LLMs在股票分析方面的能力;
- AnalyScore:一个全面的评估框架,用于衡量并量化分析质量的改进;