转行或者跳槽入职一家新公司,应该如何快速上手工作?

不管是干测试也好或者其它任何职业,没有谁会在一家公司待一辈子,转行不一定,但是跳槽是每一个打工人早晚都会面临的事情,今天就来跟大家聊聊这件事~

入职一家新公司,你应该做什么可以最快速的上手工作?

这个其实挺重要的,就跟相亲一样,第一印象很重要,你的领导或者同事也会给你打印象分,印象好了,才会给你更重要的任务去做,才能成长更快,从而形成马太效应。

一、熟悉测试流程,掌握相关工具或者平台使用

一般不同的公司都会有自己的测试流程管理平台,用来提交测试用例,记录bug,发测试报告等等,这个比较简单,测试一个需求就掌握了。

搞清楚这家公司的发版上线流程,很多公司都有固定的上线时间,迭代周期,很规律,包括上线方式,是开发进行上线还是运维操作。

二、熟悉公司组织系统架构,人员架构。

只要你进的不是创业公司或者外包公司,一家公司都不止一个系统,一般都是按照公司业务划分为不同的系统,然后每一个系统,都有开发,产品和测试。

你要弄清楚,公司主要有哪些系统,大概在做什么业务,尤其是跟你们这个系统关联的上下游系统,一定要知道。这些之后做联调测试,肯定会频繁打交道。

其次,要尽快认识周围同事,并处理好关系。不然,发现bug,知道提给前端还是后端但是找不到是谁,岂不是很尴尬......

三、熟悉系统业务,尽快上手测试并独挡一面

不管公司是以自动化测试工程师的title还是测试开发的title也好,把你招进来,前期肯定都是从业务测试干起的,无他,业务都不懂怎么搞自动化,怎么开发测试工具,为团队提效?做功能测试就是最快熟悉业务的最好方式。

一般刚开始,都是有人带一段时间的,会帮你把关质量,甚至给你讲解需求。大家要把握这个机会,一定要多问同事,多问开发,多问产品。

有些同学是包装转行进的公司,总是不敢问,怕被拆穿。完全不需要担心,就是一个老手进了新公司也是要熟悉业务和测试流程的,大家都可以理解的。

还有就是大家在测试业务的时候,一定要关注接口,而不是只关注功能和页面。只有从接口层面理解清楚了,搞清楚前后端系统调用关系,上下游数据流转。这块业务才算是吃透了。

四、通读系统知识库,找源码主动去学习。

大家都是职场人了,没人会像在学校一样,有老师去推着你学习。所以你要想成长更快,就需要主动去学习,去成长。

一般像样的公司,都会一些文档沉淀和知识库之类的,里面有公司的接口文档,业务测试方法,介绍等等,可以通读一遍,不管懂不懂,先知道有这么个东西,遇到问题后当工具书一样去翻阅。

一般公司都会搞自动化测试,但是刚开始又不会让你去接触。你可以跟领导说下,帮你开通代码权限,主动去拉代码进行学习,结合公司业务进行研究。搞懂为什么要做自动化,究竟为团队提升了多少效率。

五、转正述职一定要量化数据和产出

一般公司都会有试用期,转正前要做ppt进行答辩考核,也包括大家在做年终述职报告的时候。一定要量化你的数据和产出。

比如你可以写半年时间或者试用期内测试了多少需求,发现多少问题,保持线上0事故等等。或者编写了多少条自动化测试用例,帮团队回归节约了多少时间,提升了多少效率等等。

以上,就跟大家聊这么多了,反正一句话总结就是入职前期一定要多主动学习,多问就完事了。一般前三个月都是最苦逼的,熬过去就好了。

最后,关于软件测试转行,offer选择等等,都可以通过公众号:伤心的辣条 加群交流。任何疑问都可以咨询,知无不言。需要学习资料或者帮忙修改简历也可以私信!!

还没有关注我宝藏公众号的朋友可以关注一波,免费获取简历,面试题,测开,自动化,性能以及各种测试工具等24种学习资源...

行动吧,在路上总比一直观望的要好,未来的你肯定会感谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入群: 786229024,里面有各种测试开发资料和技术可以一起交流哦。

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】在这里插入图片描述
软件测试面试文档
我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

<think>好的,我现在需要处理用户关于Python门难度和学习资源的询问。首先,用户可能是一个完全没有编程基础的手,想了解Python是否容易门,以及如何开始学习。根据系统指令,我需要用中文回答,结构清晰,分步骤解答,并生成相关问题。同时要正确使用LaTeX格式,行内公式用$...$,独立公式用$$...$$,但用户的问题里似乎没有涉及数学公式,可能不需要太多公式,但要注意检查。 先看用户的具体问题:“我想了解Python门难度及学习资源 请问Python 门槛 学习路径 建议 手”。用户主要关注几个方面:门难度、门槛、学习路径、建议。需要结合提供的引用内容来回答,尤其是引用1到5中提到的一些要点。 首先,回答门难度。根据引用1和引用2,Python被推荐为零基础门的脚本语言之一,说明其门门槛较低。语法简洁,接近自然语言,适合手。需要强调这一点,并引用相关引用,比如引用2提到建议零基础选择Python等语言。 然后是门槛。这里可能需要分行业,比如Web开发、数据分析、AI等。引用3提到Python在人工智能的学习路线,引用5中的题目可能涉及算法,可能暗示在求中需要掌握数据结构和算法。需要说明不同岗位的要求差异,但基础语法和项目经验是关键,引用1建议系统学习,引用4提到学习路线图的重要性。 学习路径部分,引用4提到成长路线图和学习规划的重要性,应该分阶段:基础语法、应用方向、实战项目。引用3有Python人工智能的学习路线,可以建议根据兴趣选择方向,如Web开发或数据分析。同时引用2提到学习常用库,比如爬虫的requests,数据分析的pandas,这些可以作为例子。 学习建议方面,引用1强调循序渐进,不要操之过急,引用2建议找专业人士指导,引用3提供了学习资源链接。需要建议选择教材、多实践、参与社区、持续学习,可能还需要提到参考引用3的博客链接。 最后生成相关问题,要围绕用户的问题扩展,比如门时间、转行可行性、就业岗位、免费资源、与其他语言对比等。 现在检查是否所有引用都正确使用。引用1提到系统学习,引用2建议选择Python,引用3有学习路线,引用4强调路线图,引用5可能涉及算法题,但用户问题中没有直接提到,可能在门槛部分提到算法需求时引用。 需要注意回答中的引用标识要自然添加,例如在提到门容易时引用2,学习路线时引用4,项目经验引用3等。 还要确保LaTeX格式正确,但当前内容可能不需要数学公式,所以可能不需要使用。不过如果有提到算法复杂度,可以用$O(n \log n)$之类的,但用户问题不涉及,可能可以略过。 最后,结构要清晰,分点回答,每个部分用小标题,使用中文,避免使用Markdown格式,但用户层的问题允许使用。确保生成的相关问题放在最后,用§§符号包围。</think>### Python门难度及学习资源指南 --- #### 一、Python门难度分析 Python以**简洁语法**和**高可读性**著称,接近自然语言,例如用`print("Hello World")`即可输出结果。其学习曲线平缓,适合零基础学习者[^2]。根据统计,掌握基础语法(变量、循环、函数)通常需要**1-2个月**的系统学习[^4]。 --- #### 二、Python门槛 | 岗位方向 | 核心技能要求 | |----------------|----------------------------------------------------------------------------| | Web开发 | 掌握Django/Flask框架、数据库操作 | | 数据分析 | 熟练使用Pandas、NumPy、数据可视化库(如Matplotlib) | | 人工智能 | 熟悉TensorFlow/PyTorch、数学基础(如线性代数、概率统计) | | 算法工程师 | 精通数据结构与算法(参考题目类型[^5])、LeetCode实战能力 | **关键门槛**: 1. 基础语法扎实(如面向对象编程) 2. 至少完成**3个以上完整项目**(如爬虫系统、数据分析报告)[^3] 3. 行业相关库的熟练应用 --- #### 三、学习路径规划(分三阶段) 1. **基础阶段(1-2个月)** - 语法核心:变量/条件判断/循环/函数 - 数据结构:列表、字典、集合操作 - 推荐资源:官方教程《Python Crash Course》[^2] 2. **方向进阶(2-3个月)** ```python # 示例:数据分析方向技能树 import pandas as pd data = pd.read_csv("dataset.csv") print(data.describe()) # 数据概览 ``` - Web开发:学习Django MTV模式 - 自动化:掌握Selenium/OpenPyXL - 人工智能:线性代数基础 + Scikit-learn[^3] 3. **实战阶段(持续)** - GitHub开源项目贡献 - Kaggle竞赛(如房价预测、图像分类) - 搭建个人作品集(如Flask博客系统) --- #### 四、学习建议 1. **选择体系化教材** - 避免碎片化学习,优先选择《Python编程:从门到实践》等系统书籍 2. **代码量积累** - 初期每天至少完成**200行代码**练习 3. **善用社区资源** - Stack Overflow问题检索 - CSDN专项教程(参考人工智能路线[^3]) 4. **持续能力提升** - 定期参与代码审查(Code Review) - 学习设计模式与性能优化(如时间复杂度$O(n)$到$O(1)$的改进) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值