从腾讯三支柱看集团企业人力资源数字化转型规划(43页PPT)(附下载方式)

篇幅所限,本文只提供部分资料内容,完整资料请看下面链接
https://download.csdn.net/download/AI_data_cloud/88561445

资料解读:从腾讯三支柱看集团企业人力资源数字化转型规划

详细资料请看本解读文章的最后内容

随着数字化浪潮的推进,人力资源管理正经历着深刻的变革。从传统的人事管理到现代的人力资本管理,企业正逐渐意识到人力资源不仅是成本中心,更是价值创造的核心。本文将详细解读腾讯三支柱模型在集团企业人力资源数字化转型中的应用。

数字化转型的核心理念

数字化转型的核心在于将人力资源管理转变为人力资本管理。这一转变不仅仅是技术的升级,更是管理理念的革新。传统的人力资源管理侧重于人员的基础信息和流程的标准化,而现代的人力资本管理则更关注员工的可持续发展,通过识别、提升和激励等多种手段来提高员工的价值。

人力资本管理的先进之处在于其更注重人的可持续发展。它不仅仅关注员工的现有状况,更重视通过多种“投资”手段来提高员工的能力和价值。这种管理模式强调员工的成长和发展,通过职业发展、继任者计划和能力提升等措施,激发员工的自我发展动力。

人力资源管理的三个阶段

人力资源管理经历了三个阶段:人事管理、人力资源管理和人力资本管理。每个阶段都有其独特的关注点和目标。

  1. 人事管理​:这一阶段主要关注员工的基本信息管理,如招聘、入职、离职等事务性工作。它侧重于员工的基础信息数据和流程的标准化。
  2. 人力资源管理​:在这一阶段,企业开始关注员工的能力提升和激励。通过绩效管理、培训发展和知识管理,企业致力于提高员工的工作效率和满意度。
  3. 人力资本管理​:这是最高级的阶段,企业不仅关注员工的能力提升,还注重员工的职业发展和继任者计划。通过大数据分析和人才盘点,企业能够更好地识别和培养核心人才。

人力资源三支柱模型

人力资源三支柱模型是现代企业人力资源管理的重要工具。它将人力资源管理分为三个支柱:人力资源专家中心(COE)、人力资源业务伙伴(HRBP)和人力资源共享服务平台(SSC)。

  1. 人力资源专家中心(COE)​:这一支柱负责制定人力资源政策和流程,提供专业技术支持。COE通过建立人力资源专业能力,提升公司人力资源政策、流程和方案的有效性。
  2. 人力资源业务伙伴(HRBP)​:HRBP负责将人力资源政策落实到具体业务中,提供端到端的解决方案。他们贴近业务,提供个性化的支持,确保人力资源政策与业务需求紧密结合。
  3. 人力资源共享服务平台(SSC)​:SSC负责处理日常事务,提供标准化、流程化的服务。通过集中管理,SSC提高了人力资源管理的效率,使HR能够从繁琐的事务性工作中解脱出来,专注于战略价值工作。

数字化转型的具体设计

在数字化转型的具体设计中,企业需要构建一个强大的信息系统来支持人力资源管理的各个环节。这个系统应具备以下功能:

  1. 组织发展​:通过构建“生态+”组织架构,实现组织架构的历史节点保存和人员与组织的同步更新。系统应支持职级、职位、编制等信息的分级维护和集团管控。
  2. 招聘管理​:打通内外网络,减少工作量,增强招聘效果。系统应支持简历管理、招聘渠道管理、面试和笔试安排等功能。
  3. 薪酬管理​:实现薪酬体系的标准化设计和自动化操作。系统应支持薪酬计算、薪酬总额控制和薪酬发放等功能,并与财务系统打通。
  4. 绩效管理​:通过目标层层分解和PDCA循环,实现便捷的绩效管理过程。系统应支持绩效计划制定、绩效考核和绩效反馈等功能。
  5. 人才发展​:融合人才盘点和个性化人才发展方案,实现人力资本管理。系统应支持人才盘点、培训管理和学习地图等功能。
  6. 员工关系​:通过大数据分析实现宏观管理。系统应支持员工信息管理、风险提示和统计分析等功能。

外部生态链接

在数字化转型的过程中,企业还需要积极链接外部生态资源,以提升人力资源管理的效率和效果。这包括与金融平台、商旅平台、福利平台和订餐平台等的对接,提供更加便捷和多样化的服务。

结语

人力资源数字化转型是企业提升竞争力的重要途径。通过构建强大的信息系统和引入外部生态资源,企业可以实现人力资源管理的现代化和智能化。

接下来请您阅读下面的详细资料吧。

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成轴加速度计和轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客11

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值