Occupancy Map(Occupancy Grid)的更新

Occupancy Map是通过将空间划分为网格并存储每个单元格内存在障碍物概率的地图。文章详细介绍了如何使用Odds进行更新,通过贝叶斯公式和马尔可夫假设简化计算,并探讨了对数Odds的优势,便于在实际的SLAM或Cartographer应用中高效更新地图。
摘要由CSDN通过智能技术生成

文章同步更新于github page

Occupancy Map

将空间划分为一个个小网格(cell),每个cell中存储cell内是否有障碍物的概率,这样的地图称为Occupancy Map,由于所有cell构成一个网,所以也称为Grid Map。

以2D Occupancy Map为例,每个cell中都有一个概率,那整个地图可以看做一个描述障碍物分布的概率分布(严格要归一化后才是概率分布)。构建地图的过程,就是根据传感器(比如Lider)的观测,更新这个概率分布。

设每个cell的概率相对于其他cell是独立的,更新地图的概率分布就简化为更新每个cell的概率。即在已知1到t时刻所有观测的情况下,该cell中有障碍物的概率,记为

p ( m i ∣ z 1 : t ) p(m_i|z_{1:t}) p(miz1:t)

Odds

考虑到更新的方便,每个cell中实际存储的是概率对应的Odds。

Odds定义为有障碍物的概率与无障碍物概率的比,即

o ( m i ∣ z 1 : t ) = p ( m i ∣ z 1 : t ) 1 − p ( m i ∣ z 1 : t ) = p ( m i ∣ z 1 : t ) p ( ¬ m i ∣ z 1 : t ) o(m_i|z_{1:t})=\frac{p(m_i|z_{1:t})}{1 - p(m_i|z_{1:t})} = \frac{p(m_i|z_{1:t})}{p(\neg m_i|z_{1:t})} o(miz1:t)=1p(miz1:t)p(miz1:t)=p(¬miz1:t)p(miz1:t)

已知Odds,也很容易反算出对应的概率。可以将Odds理解为一个映射,将值域在 [ 0 , 1 ] [0, 1] [0,1]之间的概率映射到 [ 0 , + ∞ ) [0,+\infty) [0,+)

Odds的更新

根据贝叶斯公式,有

p ( m i ∣ z 1 : t ) = p ( z t ∣ m i , z 1 : t − 1 ) p ( m i ∣ z 1 : t − 1 ) p ( z t ∣ z 1 : t − 1 ) p(m_i|z_{1:t})=\frac{p(z_t|m_i, z_{1:t-1})p(m_i|z_{1:t-1})}{p(z_t|z_{1:t-1})} p(miz1:t)=p(ztz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值