前言
最基础的地图是占据栅格地图Occupancy map,每个格子标明了该位置是否被物体占据。然而对于规划和避障而言,地图中的占据信息是不够的,还需要障碍距离、方向等信息。TSDF和ESDF地图弥补了这个缺陷。
IROS 2010: Improved updating of Euclidean distance maps and Voronoi diagrams 这篇论文提供了一种从Occupancy Map更新ESDF地图的方法。
论文解读
这篇文章实际上要解决通过occupancy map生成ESDF和voronoi graph两个问题,但这里只解读与ESDF相关的内容。
文章Part.Ⅲ 描述了生成ESDF的算法流程,伪代码如下:
并且给出了一个示意图:
示意图说明
ABCD四幅图中网格grids的深浅表明了与最近障碍物之间的距离(其实就是ESDF),纯黑色的grid说明该位置是障碍物。
- A图是ESDF的原始状态
- B图中,A图左方的障碍物被去除,A图右方放置了一个新的障碍物。新障碍物附近的grids获得lower状态并向外传播,旧障碍物附近的grids获得raise状态并向外传播。
- C图中,新障碍物附近稍远的少量grids继续传播lower状态,而多数grids不再传播lower状态。旧障碍物附近稍远的grids获得了lower状态,并向旧障碍物方向传播。
- D图中,新障碍物附近稍远的grids不再传播lower状态。旧障碍物向内传播lower状态达到中心后也停止了传播。
raise和lower的意思是向上,也就是(最近障碍物)距离增加和减少。显而易见,从每个grid的ESDF是通过距离的增减状态传播进行更新的。
将这个示意图与伪代码放在一起看能够加速算法理解。
伪代码说明
Algorithm 1给出了算法的伪代码,首先给出几个定义:
o b s t s obst_s obsts : 与网格s距离最近的障碍物
d i s t s dist_s dists : s与距离最近的障碍物的距离值
t o R a i s e s toRaise_s toRaise