2024深度学习发论文&模型涨点之——小波变换+CNN
小波变换与卷积神经网络(CNN)的结合是一种在图像处理和计算机视觉领域中非常有前景的技术。这种结合利用了小波变换在多尺度分析方面的优势,以及CNN在特征提取和分类任务中的高效性。
小波变换+CNN为图像处理和计算机视觉任务提供了一种新的、高效的解决方案,能够在保持参数效率的同时提高模型的性能和鲁棒性。通过利用小波变换的多尺度分析能力,可以显著提升CNN的性能,尤其是在参数效率和感受野方面。这种结合不仅在理论上具有创新性,而且在实际应用中也显示出了巨大的潜力。
如果有同学想发表相关论文,小编整理了一些小波变换+CNN【论文】合集,以下放出部分,全部论文PDF版
需要的同学公人人人号【AI智界先锋】自取
论文精选
论文1:
An Intelligent Bearing Fault Diagnosis Framework: One Dimensional Improved Self Attention-enhanced CNN and Empirical Wavelet Transform
智能轴承故障诊断框架:一维改进自注意力增强CNN和经验小波变换
方法
-
经验小波变换(EWT):使用EWT算法将原始信号分解为三个频率分量,进一步提取多频率分量以增强信号特征。
-
一维改进自注意力增强卷积神经网络(1D-ISACNN):利用新开发注意力机制的优势和优化的元激活连接函数进行特征学习,以更好地捕获和映射信号中的关键信息。
-
标签平滑正则化(LSR):设计作为1D-ISACNN的损失函数,考虑了训练样本中正确标记位置的损失以及其他错误标记位置的损失。
-
自适应矩投影估计(AdamP):设计以确保更新模型参数时更稳健的梯度更新策略。
创新点
-
经验小波变换(EWT):通过将信号分解为不同尺度或频率的多个分量,每个分量包含特定尺度或频率范围内的特征信息,从而更好地理解和分析信号的局部结构和动态属性。
-
注意力机制:通过在CNN中引入注意力机制,模型能够自动学习并选择性地关注图像中的重要区域或特征,提供细粒度的区域加权和特征提取能力。
-
标签平滑正则化(LSR):通过考虑训练样本中所有可能的错误标记位置的损失,而不仅仅是正确标记位置的损失,减少了模型过拟合的风险,并提高了模型的泛化能力。
-
自适应矩投影估计(AdamP):通过动态调整学习率,解决了在稀疏梯度存在时Adam算法可能难以有效调整学习率的问题,提高了模型训练的鲁棒性和效率。
论文2:
Detection of Arrhythmia Heartbeats from ECG Signal Using Wavelet Transform-Based CNN Model
基于小波变换的卷积神经网络模型检测ECG信号中的心律失常
方法
-
小波自适应阈值去噪:使用小波变换方法首先对ECG信号进行去噪处理。
-
深度一维卷积神经网络(1D CNN):引入一个高效的12层深度1D CNN进行特征提取。
-
SoftMax和机器学习分类器:应用于心跳的分类。
创新点
-
小波变换去噪:通过小波变换方法对ECG信号进行预处理,有效去除噪声,提高了信号的质量。
-
深度1D CNN模型:提出了一个12层的深度1D CNN模型,用于更有效地提取ECG信号的特征,并进行分类。
-
高性能指标:该方法达到了平均准确率99.40%,精确率98.78%,召回率98.78%,F1分数98.74%,明显优于现有模型,显示出在心律失常心跳检测中的优越性能。
论文3:
Discrete Wavelet Transform for CNN-BiLSTM-based Violence Detection
基于离散小波变换的CNN-BiLSTM暴力检测
方法
-
离散小波变换(DWT):使用一阶DWT提取视频中的对角线空间特征,并将这些特征传递给CNN以提取每一帧中的关键、高质量特征。
-
卷积神经网络(CNN):利用不同大小的卷积核提取特征,并通过ReLU激活函数限制特征值为正。
-
双向长短期记忆网络(BiLSTM):使用BiLSTM架构比较当前帧与前后帧的信息,识别事件的顺序流。
-
二元分类器:基于时空特征对动作进行分类。
创新点
-
DWT-CNN-BiLSTM融合模型:提出了一种新的融合模型,通过结合空间和时间特征来提高暴力行为检测的准确性。
-
时空特征的双向学习:模型不仅学习当前帧与过去帧的信息,还学习与未来帧的信息,增强了对事件顺序的理解。
-
高效的特征提取:通过仅使用视频帧的对角线特征,减少了计算量,提高了时间效率。
-
实时自动化检测:该方法与监控摄像头系统结合,可实现实时自动化的犯罪行为检测。
论文4:
ECG Classification Using Deep CNN Improved by Wavelet Transform
利用小波变换改进的深度CNN心电图分类
方法
-
小波变换:将ECG信号分解为不同频率尺度的9种子信号,并在分段滤波后进行小波重构,以消除噪声的影响。
-
深度卷积神经网络(DCNN):使用24层卷积神经网络通过不同大小的卷积核提取层次化特征。
-
softmax分类器:最终使用softmax分类器对ECG信号进行分类。
创新点
-
小波变换预处理:利用小波变换对ECG信号进行预处理,有效消除了噪声干扰,提高了信号的稳定性。
-
深度特征提取:通过设计更深的卷积神经网络,更好地提取ECG信号的层次化特征。
-
优化的网络结构:针对ECG信号数据特点,设计了大卷积核以增加卷积核的感知视野,并使用一维卷积核提取ECG信号。
-
算法性能提升:通过使用RAdam优化器和批量归一化,提高了模型的收敛速度和分类结果的优化。
如果有同学想发表相关论文,小编整理了一些小波变换+CNN【论文】合集。
需要的同学公人人人号【AI智界先锋】自取