CVPR 2025 解码未来:扩散模型在小波变换中的突破性应用

扩散模型是一类基于随机过程生成新数据的机器学习模型,主要用于生成任务,如图像、音频和文本合成。这些模型通过模拟数据生成的连续随机过程来工作,首先引入噪声破坏数据结构,然后逐步去除这些噪声来恢复或创造新的数据实例。由于其生成高质量、高分辨率数据的能力,扩散模型已在多个领域显示出广泛的应用潜力

小波变换方面,扩散模型可以用来增强或重构信号和图像。小波变换是一种强大的工具,用于信号处理和图像分析,特别是在处理非平稳信号时。扩散模型通过在变换的小波系数上进行操作,可以改善小波变换在信号分解和重建方面的性能,特别是在去噪、压缩和特征提取等应用中。这种结合提供了一种新的方法来处理复杂信号和图像,优化传统的小波变换方法,并可能带来更精确的分析结果和更高质量的重构图像

UDiFF: Generating Conditional Unsigned Distance Fields with Optimal Wavelet Diffusion

关键方法:我们提出了UDiFF,一个三维扩散模型无符号距离字段(udf),它能够从文本条件下或无条件地生成具有开放表面的纹理3D形状。我们的关键思想是在空间频域用最优小波变换生成UDF,为UDF生成生成一个紧凑的表示空间。具体来说,我们提出了一种数据驱动的方法来学习udf的最优小波变换,而不是选择适当的小波变换,这仍然会导致大量的信息损失。

核心创新点:

  • 我们提出了UDiFF,一个无符号距离场的三维扩散模型,它能够从文本条件下或无条件地生成具有开放表面的真实纹理三维形状。

  • 通过数据驱动优化引入了UDF的最优小波变换,并证明了通过该变换学习到的空间频域是一个适合UDF生成的紧凑域。

  • 我们评估了UDiFF来生成具有开放和封闭表面的三维形状,并显示了我们比最先进的方法的优越性。

Stage-by-stage Wavelet Optimization Refinement Diffusion Model for Sparse-View CT Reconstruction

关键方法:我们提出了一种创新的方法,称为逐级小波优化细化扩散(剑)模型,用于稀疏视图CT重建。具体来说,我们建立了一个整合低频和高频生成模型的统一数学模型,通过优化程序实现了求解。此外,我们对小波的分解分量进行低频和高频生成模型,而不是对正弦图或图像域进行低频和高频生成模型,确保了模型训练的稳定性。

核心创新点

  • 我们提出了一个开创性的小波域扩散模型,工作在小波域内,而不是原始数据或图像域。这种创新的方法大大提高了在整个训练过程中扩散模型的稳定性。通过利用小波变换,我们的模型可以有效地捕获和表示正弦图中的特征和结构。

  • 通过统一的数学模型对高频和低频分量对正弦图进行建模,我们有效地将复杂数据分布分离为两个独立的简化分布。因此,通过优化所建立的数学模型,结合两个得分函数来表征这两种不同的数据分布。这种创新的方法使我们能够解决数据复杂性所带来的挑战。

  • 我们还开发了一种基于小波的两阶段扩散策略。在第一阶段,重点是学习包含正弦图的主要结构和特征的低频分量。在第二阶段,重点是构建一个高频组件的生成模型,以捕捉复杂的细节和结构。这种两阶段的方法使模型能够学习和学习有效地利用全球和本地信息,有助于提高重建的质量和准确性。

  • 我们在两个大规模的稀疏视图CT数据集上严格地验证和评估了我们提出的模型。实验结果显示了其显著的重建性能,并被定量和定性的评价所证实。该模型在产生高质量重建方面的能力重申了其作为稀疏视图CT重建的一个稳健和有效的解决方案的潜力。

WDM: 3D Wavelet Diffusion Models for High-Resolution Medical Image Synthesis

****关键**方法:**本文提出了一种基于小波的医学图像合成框架,将小波分解图像应用扩散模型。该方法是一种简单而有效的将三维扩散模型扩展到高分辨率的方法,可以在单个40 GB的GPU上进行训练。在分辨率为128×128×128的情况下,BraTS和LIDC-IDRI无条件图像生成的实验结果表明,与最近的GANs、扩散模型和潜在扩散模型相比,这是最先进的图像保真度(FID)和样本多样性(MS-SSIM)分数。

核心创新点

  • 我们提出了WDM,一种记忆高效的三维小波扩散模型,用于医学图像合成。

  • 该方法可以生成分辨率高达256×高达256×256的高质量图像,并且可以在单个40 GB GPU上进行训练。

  • 该方法在分辨率为128×128×128的情况下,展示了最先进的图像保真度(FID)和样本多样性(MS-SSIM)得分,同时在256×256×256的分辨率下优于所有比较方法。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 扩散模型在信号去噪中的应用及实现方法 扩散模型作为一种新兴的生成模型,在信号去噪方面展现了巨大的潜力。其核心思想是通过对输入数据逐步加入噪声,再训练一个逆向网络来去除这些噪声,从而恢复原始信号。 #### 去噪机制 扩散模型通过一系列迭代步骤逐渐减少加到信号上的随机噪声[^2]。这种机制类似于热力学中的退火过程,其中系统的能量状态被逐步降低至稳定态。具体而言,扩散模型可以分为两个阶段:前向扩散和反向采样。 - **前向扩散** 在这一过程中,干净的数据样本会被注入高斯白噪声,形成一组带噪版本的数据集。此操作通常由参数化的马尔可夫链定义,每一步都增加一定量的噪声直到完全淹没原信号特征为止[^1]。 - **反向采样 (去噪)** 反向传播则试图逆转上述破坏效应,即从纯噪音出发一步步还原出清晰的目标对象。这实际上就是让神经网络学会估计任意时刻t处给定扰动水平xt下的真实梯度方向∇logp_t(x|x_0),进而指导后续更新路径的选择直至最终收敛于初始分布近似解x̂₀≈x₀。 #### 实现技术细节 为了有效地执行上述流程并达到良好的性能表现,以下是几个关键技术要点: - **损失函数的设计** 训练期间采用L2范数作为衡量预测误差的标准之一,并结合其他正则项共同优化整个框架结构;此外还可以引入变分下界(VLB)或者证据上限(ELBO)等形式进一步提升泛化能力[^3]。 - **高效推理算法** 鉴于标准DDIMs可能涉及过多计算开销的问题,研究人员提出了多种加速策略比如线性规划调度方案(linear schedule)以及自适应步长调整机制等等,旨在缩短运行时间的同时维持较高精度输出效果。 下面给出一段基于Python语言编写的小型实验代码片段用于演示基本原理: ```python import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader import numpy as np class DiffusionModel(torch.nn.Module): def __init__(self, beta_start=0.0001, beta_end=0.02, timesteps=1000): super().__init__() self.timesteps = timesteps betas = torch.linspace(beta_start, beta_end, steps=timesteps) alphas = 1 - betas alpha_cumprod = torch.cumprod(alphas, dim=0) self.register_buffer('betas', betas) self.register_buffer('alphas', alphas) self.register_buffer('alpha_cumprod', alpha_cumprod) def forward_diffusion_sample(self, x_0, t, device="cpu"): noise = torch.randn_like(x_0).to(device) sqrt_alpha_cumprod_t = self.alpha_cumprod[t].sqrt().view(-1, 1, 1, 1).to(device) sqrt_one_minus_alpha_cumprod_t = (1-self.alpha_cumprod[t]).sqrt().view(-1, 1, 1, 1).to(device) noisy_x_t = sqrt_alpha_cumprod_t * x_0 + sqrt_one_minus_alpha_cumprod_t * noise return noisy_x_t, noise model = DiffusionModel() dataset = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor(), download=True) dataloader = DataLoader(dataset, batch_size=64, shuffle=True) for step, (images, labels) in enumerate(dataloader): images = images.to("cuda") model = model.to("cuda") # Sample random timestep from uniform distribution between 0 and T. t = torch.randint(low=0, high=model.timesteps, size=(len(images),)).long() # Forward pass through diffusion process to get noised image at time 't'. x_noisy, _ = model.forward_diffusion_sample(images, t, device='cuda') break ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值