Linux 关闭远程ssh密码登录

远程登录linux使用ssh时,使用密码登录会有安全风险问题,采用密钥登录会更安全。

配置关闭使用ssh密码登录 (以管理员身份):
编辑 /etc/ssh/sshd_config文件:

vim /etc/ssh/sshd_config

修改下图字段为 no
在这里插入图片描述
保存配置文件后,重新加载:

systemctl reload sshd
### CUDA 核心与 Tensor 核心的区别及用途 #### CUDA 核心的特点及其应用领域 CUDA 核心是 NVIDIA GPU 中最基本的处理单元,负责执行浮点整数运。这些核心广泛应用于图形渲染以及通用计任务中。对于深度学习而言,CUDA 核心可以支持神经网络中的各种操作,如激活函数、池化层等非矩阵乘法密集型的任务。 ```cpp // 示例:使用 CUDA 核心实现简单的向量加法 __global__ void vectorAdd(const float* A, const float* B, float* C, int numElements) { int idx = blockDim.x * blockIdx.x + threadIdx.x; if (idx < numElements) C[idx] = A[idx] + B[idx]; } ``` #### Tensor 核心的功能特性及其应用场景 Tensor 核心专为加速机器学习工作负载而设计,特别是针对张量(多维数组)间的快速矩阵运进行了优化。自 Volta 架构引入以来,经过多次迭代改进,在最新的 Hopper 架构下已经进化至第四代[^2]。相比于传统 CUDA 核心,Tensor 核心能够显著提高涉及大量并行线性代数运的工作效率,例如卷积神经网络训练过程中的前向传播与反向传播阶段。 ```cpp // 使用 wmma 库调用 Tensor 核心进行矩阵乘法 #include <cuda_fp16.h> #include <mma.h> using namespace nvcuda; void matrixMultiplication() { // 定义矩阵维度其他参数... // 加载输入数据到共享内存 __shared__ half shared_A[...], shared_B[...]; // 创建 fragment 对象存储中间结果 wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::row_major> a_frag; wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> b_frag; wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag; // 将数据加载到 fragments 并执行 MMA 操作 wmma::load_matrix_sync(a_frag, shared_A, ...); wmma::load_matrix_sync(b_frag, shared_B, ...); wmma::mma_sync(c_frag, a_frag, b_frag, c_frag); // 存储最终结果 wmma::store_matrix_sync(..., c_frag, ..., wmma::mem_row_major); } ``` 通过上述对比可以看出,虽然两者都属于 GPU资源的一部分,但在具体功能定位上存在明显差异——CUDA 核心更侧重于满足多样化的一般性需求;而 Tensor 核心得益于其高度专业化的设计理念,在特定类型的高性能计场景尤其是现代深度学习框架内展现出无可比拟的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值