语音识别的预训练模型

语音识别的预训练模型

语音识别模型

大致分为两类:

  1. 连接时序分类(Connectionist Temporal Classification, CTC):仅编码器(encoder-only)的模型,顶部带有线性分类(CTC)头
  2. 序列到序列(Sequence-to-sequence, Seq2Seq):编码器-解码器(encoder-decoder)模型,编码器和解码器之间带有交叉注意力机制

在 2022 年之前,CTC 是这两种架构中更受欢迎的一种,以 encoder-only 模型为主,例如 Wav2Vec2HuBERTXLSR 在语音的预训练/微调范式中取得了突破。 大公司如 Meta 和 Microsoft 在大量无标签音频数据上对编码器进行了多天甚至数周的预训练。 用户采用一个预训练的检查点,并在少至 10 分钟的有标注的语音数据上进行微调,就可以在下游语音识别任务中取得强大的性能。

然而,CTC 模型也有其缺点。在编码器上附加一个简单的线性层可以得到一个小巧、快速

### 关于语音识别预训练模型的资料与教程 #### SpeechBrain 中文预训练模型 SpeechBrain 提供了一种强大的工具来支持中文语音识别应用。该框架允许开发者轻松集成其预训练模型,从而快速实现高质量的中文语音识别功能[^1]。对于希望构建语音助手、语音翻译或语音输入等应用场景的用户来说,这是一个非常实用的选择。 #### FunASR 工具包 FunASR 是由阿里巴巴达摩院开源的一个多功能语音识别工具包。除了提供标准的自动语音识别 (ASR) 功能外,还涵盖了诸如语音活动检测 (VAD)、标点恢复以及多人对话场景下的语音识别等功能[^2]。FunASR 支持预训练模型的推理和微调操作,使得研究者和开发者能够更加灵活地调整模型以适应特定需求。 #### WAV2VEC 非监督预训练模型 WAV2VEC 是一种专为语音信号设计的非监督学习方法,在降低词错误率方面表现优异。相比于传统的 Deep Speech 2 架构,采用 WAV2VEC 后的 WER 可从 3.1% 减少至 2.43%,显著提升了性能水平[^3]。此模型适用于那些希望通过无标签数据完成初步特征提取后再进一步优化的任务。 #### ESPNet AISHell 数据集上的 Conformer 模型 ESPNET 是另一个流行的端到端 ASR 开源项目,其中包含了基于 AISHELL 数据集训练得到的 CONFORMER 类型预训练模型。“KAMO-NAOYUKI/AISHELL_CONFORMER”即为此类模型名称之一。下面给出一段 Python 示例代码用于加载并运行上述提到过的预训练模型: ```python import soundfile from espnet_model_zoo.downloader import ModelDownloader from espnet2.bin.asr_inference import Speech2Text # 初始化下载器对象 d = ModelDownloader() # 创建 Speech2Text 实例 speech2text = Speech2Text( **d.download_and_unpack("kamo-naoyuki/aishell_conformer"), maxlenratio=0.0, minlenratio=0.0, beam_size=20, ctc_weight=0.3, lm_weight=0.5, penalty=0.0, nbest=1 ) # 加载音频文件 audio, rate = soundfile.read("t.wav") # 执行解码过程 nbests = speech2text(audio) text, *_ = nbests[0] # 输出最终结果 print(text) ``` 以上脚本展示了如何利用 ESPNET MODEL ZOO 来获取指定版本号对应的预训练权重,并将其应用于实际测试样本 t.wav 上面[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值