【Ceres】Ceres学习笔记1

1. 简介

​ Ceres 可以解决以下形式的边界约束鲁棒化非线性最小二乘问题:
min ⁡ x 1 2 ∑ i ρ i ( ∥ f i ( x i 1 , . . . , x i k ) ∥ 2 ) s.t. l j ≤ x j ≤ u j \begin{split}\min_{\mathbf{x}} &\quad \frac{1}{2}\sum_{i} \rho_i\left(\left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2\right) \\ \text{s.t.} &\quad l_j \le x_j \le u_j\end{split} xmins.t.21iρi(fi(xi1,...,xik)2)ljxjuj
​ 其中 ρ i ( ∥ f i ( x i 1 , . . . , x i k ) ∥ 2 ) \rho_i\left(\left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2\right) ρi(fi(xi1,...,xik)2) 被称为残差块(Residual Block), f i f_i fi (.)称为代价函数(Cost Function), ρ i \rho_i ρi 称为 Loss Function,十四讲中为核函数。Loss Function 是一个标量函数,用于减少异常值对非线性最小二乘问题求解的影响。

​ 作为一种特殊情况,当 ρ i ( x ) = x ρ_i(x)=x ρi(x)=x,即恒等函数,并且 l j = − ∞ l_j=−∞ lj= u j = ∞ u_j=∞ uj= 时,便得到更熟悉的非线性最小二乘问题:
1 2 ∑ i ∥ f i ( x i 1 , . . . , x i k ) ∥ 2 \frac{1}{2}\sum_{i} \left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2 21ifi(xi1,...,xik)2

2. Hello World

​ 首先,考虑寻找函数 f ( x ) = 1 2 ( 10 − x ) 2 f(x) = \frac{1}{2} (10 - x)^2 f(x)=21(10x)2 的最小值的问题。

(1)写一个仿函数用来求函数 f ( x ) = 10 − x f(x) = 10 - x f(x)=10x 的值。

struct CostFunctor {
   template <typename T>
   bool operator()(const T* const x, T* residual) const {
     residual[0] = 10.0 - x[0];
     return true;
   }
};

​ 需要注意的重要一点是 operator() 是一个模板化方法,它假定它的所有输入和输出都是T类型。这里使用模板使得Ceres 可以调用 CostFunctor::operator<T>(),当残差需要时T可以为double类型。

(2)一旦有了计算残差函数的方法,那么使用它构造一个非线性最小二乘问题 Ceres 解决便可以自动求解了。

int main(int argc, char** argv) {
    google::InitGoogleLogging(argv[0]);

    // 要求解的变量及其初始值。
    double initial_x = 5.0;
    double x = initial_x;

    // 构建最小二乘问题
    ceres::Problem problem;

    // 设置唯一的代价函数(也称为残差)
    ceres::CostFunction* cost_function =
        new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
        problem.AddResidualBlock(cost_function, nullptr, &x);

    // 配置求解器
    ceres::Solver::Options options;
    options.linear_solver_type = ceres::DENSE_QR;
    options.minimizer_progress_to_stdout = true;	//输出到 cout
    
    ceres::Solver::Summary summary;
    Solve(options, &problem, &summary);

    std::cout << summary.BriefReport() << "\n";
    std::cout << "x : " << initial_x << " -> " << x << "\n";
    return 0;
}

AutoDiffCostFunctionCostFunctor 作为输入,自动区分它并给它一个 CostFunction 接口。

3.导数

(1)数值导数

struct NumericDiffCostFunctor {
  bool operator()(const double* const x, double* residual) const {
    residual[0] = 10.0 - x[0];
    return true;
  }
};

数值微分:

CostFunction* cost_function =
  new NumericDiffCostFunction<NumericDiffCostFunctor, ceres::CENTRAL, 1, 1>(
      new NumericDiffCostFunctor);
problem.AddResidualBlock(cost_function, nullptr, &x);

自动微分:

CostFunction* cost_function =
    new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
problem.AddResidualBlock(cost_function, nullptr, &x);

​ 一般来说,建议使用自动微分而不是数值微分。 使用 C++ 模板可以提高自动微分效率,而数值微分成本高,容易出现数值错误,并导致收敛速度较慢。

(2)解析导数

​ 应该用不到吧。。。。

class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
 public:
  virtual ~QuadraticCostFunction() {}
  virtual bool Evaluate(double const* const* parameters,
                        double* residuals,
                        double** jacobians) const {
    const double x = parameters[0][0];
    residuals[0] = 10 - x;

    // Compute the Jacobian if asked for.
    if (jacobians != nullptr && jacobians[0] != nullptr) {
      jacobians[0][0] = -1;
    }
    return true;
  }
};

​ 主要掌握 NumericDiffCostFunctionAutoDiffCostFunction,了解构建与计算代价函数的方法。此外,还有DynamicAutoDiffCostFunctionCostFunctionToFunctorNumericDiffFunctorConditionedCostFunction等方法,用到时查询帮助文档。

4.鲍威尔函数

​ 现在考虑一个稍微复杂一点的例子:鲍威尔函数的最小化。

​ 令 x = [ x 1 , x 2 , x 3 , x 4 ] x = [x_1, x_2, x_3, x_4] x=[x1,x2,x3,x4], 且
f 1 ( x ) = x 1 + 10 x 2 f 2 ( x ) = 5 ( x 3 − x 4 ) f 3 ( x ) = ( x 2 − 2 x 3 ) 2 f 4 ( x ) = 10 ( x 1 − x 4 ) 2 F ( x ) = [ f 1 ( x ) ,   f 2 ( x ) ,   f 3 ( x ) ,   f 4 ( x ) ] \begin{split}\begin{align} f_1(x) &= x_1 + 10x_2 \\ f_2(x) &= \sqrt{5} (x_3 - x_4)\\ f_3(x) &= (x_2 - 2x_3)^2\\ f_4(x) &= \sqrt{10} (x_1 - x_4)^2\\ F(x) &= \left[f_1(x),\ f_2(x),\ f_3(x),\ f_4(x) \right] \end{align}\end{split} f1(x)f2(x)f3(x)f4(x)F(x)=x1+10x2=5 (x3x4)=(x22x3)2=10 (x1x4)2=[f1(x), f2(x), f3(x), f4(x)]
F ( x ) F(x) F(x) 是四个参数的函数,有四个残差,希望找到 x x x 使得 1 2 ∥ F ( x ) ∥ 2 \frac{1}{2}\|F(x)\|^2 21F(x)2 最小。

(1)定义仿函数

​ 以下为评估 f 4 ( x 1 , x 4 ) f_4(x_1, x_4) f4(x1,x4) 的代码

struct F4 {
  template <typename T>
  bool operator()(const T* const x1, const T* const x4, T* residual) const {
    residual[0] = sqrt(10.0) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
    return true;
  }
};

(2)

int main(int argc, char** argv) {
    google::InitGoogleLogging(argv[0]);

    double x1 =  3.0; double x2 = -1.0; double x3 =  0.0; double x4 = 1.0;

    ceres::Problem problem;


    problem.AddResidualBlock(
        new ceres::AutoDiffCostFunction<F1, 1, 1, 1>(new F1), nullptr, &x1, &x2);
    problem.AddResidualBlock(
        new ceres::AutoDiffCostFunction<F2, 1, 1, 1>(new F2), nullptr, &x3, &x4);
    problem.AddResidualBlock(
        new ceres::AutoDiffCostFunction<F3, 1, 1, 1>(new F3), nullptr, &x2, &x3);
    problem.AddResidualBlock(
        new ceres::AutoDiffCostFunction<F4, 1, 1, 1>(new F4), nullptr, &x1, &x4);

    ceres::Solver::Options options;
    options.max_num_iterations = 100;
    options.linear_solver_type = ceres::DENSE_QR;
    options.minimizer_progress_to_stdout = true;

    std::cout << "Initial x1 = " << x1
              << ", x2 = " << x2
              << ", x3 = " << x3
              << ", x4 = " << x4
              << "\n";

    ceres::Solver::Summary summary;
    Solve(options, &problem, &summary);
    std::cout << summary.FullReport() << "\n";
    // clang-format off
    std::cout << "Final x1 = " << x1
              << ", x2 = " << x2
              << ", x3 = " << x3
              << ", x4 = " << x4
              << "\n";
    return 0;
}

5.曲线拟合

​ 到目前为止,我们看到的示例都是没有数据的简单优化问题。 最小二乘和非线性最小二乘分析的最初目的是拟合数据曲线。 现给出 y = e 0.3 x + 0.1 y = e^{0.3x + 0.1} y=e0.3x+0.1示例。它包含通过对曲线进行采样并添加标准偏差 σ=0.2 的高斯噪声生成的数据。
y = e m x + c y = e^{mx + c} y=emx+c
​ 首先定义一个模板化对象来评估残差。每次观察都会有一个残差。

struct ExponentialResidual {
  ExponentialResidual(double x, double y)
      : x_(x), y_(y) {}

  template <typename T>
  bool operator()(const T* const m, const T* const c, T* residual) const {
    residual[0] = y_ - exp(m[0] * x_ + c[0]);
    return true;
  }

 private:
  // Observations for a sample.
  const double x_;
  const double y_;
};

​ 假设观察在一个 2n 大小的数组中,称为数据,那么问题的构造就是为每个观察创建一个 CostFunction 的简单问题。

double m = 0.0;
double c = 0.0;

Problem problem;
for (int i = 0; i < kNumObservations; ++i) {
  CostFunction* cost_function =
       new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
           new ExponentialResidual(data[2 * i], data[2 * i + 1]));
  problem.AddResidualBlock(cost_function, nullptr, &m, &c);
}
#include <iostream>
#include "ceres/ceres.h"
#include "glog/logging.h"

const int kNumObservations = 67;    //数据点的个数
// clang-format off
const double data[] = {
    0.000000e+00, 1.133898e+00,
    7.500000e-02, 1.334902e+00,
    1.500000e-01, 1.213546e+00,
    2.250000e-01, 1.252016e+00,
    3.000000e-01, 1.392265e+00,
    3.750000e-01, 1.314458e+00,
    4.500000e-01, 1.472541e+00,
    5.250000e-01, 1.536218e+00,
    6.000000e-01, 1.355679e+00,
    6.750000e-01, 1.463566e+00,
    7.500000e-01, 1.490201e+00,
    8.250000e-01, 1.658699e+00,
    9.000000e-01, 1.067574e+00,
    9.750000e-01, 1.464629e+00,
    1.050000e+00, 1.402653e+00,
    1.125000e+00, 1.713141e+00,
    1.200000e+00, 1.527021e+00,
    1.275000e+00, 1.702632e+00,
    1.350000e+00, 1.423899e+00,
    1.425000e+00, 1.543078e+00,
    1.500000e+00, 1.664015e+00,
    1.575000e+00, 1.732484e+00,
    1.650000e+00, 1.543296e+00,
    1.725000e+00, 1.959523e+00,
    1.800000e+00, 1.685132e+00,
    1.875000e+00, 1.951791e+00,
    1.950000e+00, 2.095346e+00,
    2.025000e+00, 2.361460e+00,
    2.100000e+00, 2.169119e+00,
    2.175000e+00, 2.061745e+00,
    2.250000e+00, 2.178641e+00,
    2.325000e+00, 2.104346e+00,
    2.400000e+00, 2.584470e+00,
    2.475000e+00, 1.914158e+00,
    2.550000e+00, 2.368375e+00,
    2.625000e+00, 2.686125e+00,
    2.700000e+00, 2.712395e+00,
    2.775000e+00, 2.499511e+00,
    2.850000e+00, 2.558897e+00,
    2.925000e+00, 2.309154e+00,
    3.000000e+00, 2.869503e+00,
    3.075000e+00, 3.116645e+00,
    3.150000e+00, 3.094907e+00,
    3.225000e+00, 2.471759e+00,
    3.300000e+00, 3.017131e+00,
    3.375000e+00, 3.232381e+00,
    3.450000e+00, 2.944596e+00,
    3.525000e+00, 3.385343e+00,
    3.600000e+00, 3.199826e+00,
    3.675000e+00, 3.423039e+00,
    3.750000e+00, 3.621552e+00,
    3.825000e+00, 3.559255e+00,
    3.900000e+00, 3.530713e+00,
    3.975000e+00, 3.561766e+00,
    4.050000e+00, 3.544574e+00,
    4.125000e+00, 3.867945e+00,
    4.200000e+00, 4.049776e+00,
    4.275000e+00, 3.885601e+00,
    4.350000e+00, 4.110505e+00,
    4.425000e+00, 4.345320e+00,
    4.500000e+00, 4.161241e+00,
    4.575000e+00, 4.363407e+00,
    4.650000e+00, 4.161576e+00,
    4.725000e+00, 4.619728e+00,
    4.800000e+00, 4.737410e+00,
    4.875000e+00, 4.727863e+00,
    4.950000e+00, 4.669206e+00,
};

struct ExponentialResidual {
    ExponentialResidual(double x, double y) : x_(x), y_(y) {}
    template <typename T>
    bool operator()(const T* const m, const T* const c, T* residual) const {
        residual[0] = y_ - exp(m[0] * x_ + c[0]);
        return true;
    }
    private:
    const double x_;
    const double y_;
};
int main(int argc, char** argv) {
    google::InitGoogleLogging(argv[0]);
    double m = 0.0;
    double c = 0.0;
    ceres::Problem problem;
    for (int i = 0; i < kNumObservations; ++i) {
        problem.AddResidualBlock(
            new ceres::AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
                new ExponentialResidual(data[2 * i], data[2 * i + 1])),
            nullptr,
            &m,
            &c);
    }
    ceres::Solver::Options options;
    options.max_num_iterations = 25;
    options.linear_solver_type = ceres::DENSE_QR;
    options.minimizer_progress_to_stdout = true;
    
    ceres::Solver::Summary summary;
    Solve(options, &problem, &summary);
    std::cout << summary.BriefReport() << "\n";
    std::cout << "Initial m: " << 0.0 << " c: " << 0.0 << "\n";
    std::cout << "Final   m: " << m << " c: " << c << "\n";
    return 0;
}

​ 与Hello World不同的是,曲线拟合是给出数据点求解常数,与其正好相反。

6.具有鲁棒性的曲线拟合

​ 现在假设得到的数据有一些异常值,即有一些不服从噪声模型的点。 如果使用上面的代码来拟合这些数据, 拟合曲线会偏离事实曲线。

​ 为了处理异常值,一种标准技术是使用 LossFunction。 损失函数减少了具有高残差的残差块的影响,通常是对应于异常值的块。 为了将损失函数与残差块相关联,更改 problem.AddResidualBlock(cost_function, nullptr , &m, &c);problem.AddResidualBlock(cost_function, new CauchyLoss(0.5) , &m, &c);

CauchyLoss 是 Ceres Solver 附带的损失函数之一。参数 0.5 指定损失函数的规模。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值