基于AnythingLLM+deepseek实现智能客服+企业知识库

一、写在前面

github:https://github.com/Mintplex-Labs/anything-llm

二、deepseek生成key

官网:https://platform.deepseek.com/api_keys
在这里插入图片描述
创建key之后,记得保存起来

二、安装AnythingLLM

1、下载地址:https://anythingllm.com/desktop
直接安装即可,过程可能有点长。

2、创建工作区
在这里插入图片描述

3、可以选择LLM,这里用deepseek
在这里插入图片描述
输入APkey(需要收费。。。)

在这里插入图片描述
我们可以选择本地模型,会自动下载。

三、使用

1、上传一个文件
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
需要花费一定的时间Embed,这考验计算机的计算资源。

这是这个excel的内容:
在这里插入图片描述

2、测试一下:
这里用的本地1.5B的大模型,可能有点智障。
在这里插入图片描述

四、API对接

1、生成秘钥

可以对接API
在这里插入图片描述

2、对话接口

如果用chat,响应很慢,最好用stream,需要进行对接
http://localhost:3001/api/v1/workspace/cxfworkspace/chat
注意Authorizationheader头需要设置,可以先测试一下
在这里插入图片描述

### 使用 AnythingLLMDeepSeek 构建个人知识库 构建个人知识库涉及多个组件和技术栈的选择。为了实现这一目标,可以采用基于 AnythingLLM 的大语言模型以及 DeepSeek 提供的相关服务来创建高效的知识管理系统。 #### 1. 准备工作环境 确保安装了必要的依赖项并配置好开发环境。这通常包括 Python 环境设置、虚拟环境激活等基础操作[^2]。 #### 2. 集成 AnythingLLM 模型 AnythingLLM 是一种强大的大型预训练语言模型,能够理解自然语言查询并将这些查询映射到结构化的数据源上。通过集成此模型,可以使知识库具备更高级别的语义理解和推理能力[^1]。 ```python from anythingllm import AnyThingModel model = AnyThingModel() response = model.generate(text="什么是量子计算?") print(response) ``` 这段代码展示了如何初始化一个 `AnyThingModel` 实例,并利用其 `generate()` 方法处理简单的文本输入请求。 #### 3. 应用 DeepSeek API 进行检索增强 DeepSeek 提供了一套 RESTful APIs 来支持复杂的文档索引和搜索功能。借助于该平台的服务端接口,开发者可以在客户端轻松实现全文本搜索引擎的功能特性[^3]。 ```python import requests api_key = "your_api_key_here" url = f"https://deepseek.example.com/search?query=人工智能&apikey={api_key}" headers = {"Content-Type": "application/json"} response = requests.get(url, headers=headers).json() for doc in response['documents']: print(f"{doc['title']}: {doc['snippet']}") ``` 上述脚本说明了怎样向 DeepSeek 发送 HTTP GET 请求以获取与特定主题相关的资料片段列表。 #### 4. 创建用户交互界面 (UI) 最后一步是设计直观易用的应用程序前端部分。这里推荐使用 Streamlit 工具包简化 Web UI 开发流程;它允许程序员专注于业务逻辑而不必担心底层细节问题。 ```python import streamlit as st st.title('我的私人知识库') search_query = st.text_input('请输入要查找的内容:') if search_query: results = perform_search(search_query) # 假设这是执行实际搜索函数 display_results(results) # 显示返回的结果集给用户查看 ``` 综上所述,结合 AnythingLLMDeepSeek 技术方案可以帮助建立一个强大而灵活的个性化学习资源中心。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秃了也弱了。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值