σ-代数一定是单调类但单调类不一定是σ-代数

一种理解

在一个集类中,包含了各种各样的集序列,如果对其中的不增序列交封闭、对不降序列并封闭,那么它就是单调类。

如果这个集类,对所有可数序列的并集封闭、交集封闭,不限于只是对不增序列交封闭、对不降序列并封闭,那么就是比单调类更强的一种类,比如σ-代数。

σ-代数一定是单调类,指的是σ-代数中涵盖了不增序列、不降序列以及其它序列,但是它对不增序列交封闭、对不降序列并封闭,因此它是单调类。也许σ-代数中还含有一些“增降无序”的其他序列,它们不属于“单调类”,但我们对单调类的讨论的范围仅限不增序列和不降序列。

问题1

如果集类对可数并封闭,对可数交封闭,那么就是单调类?

不完全准确。一个集合类如果对可数并封闭,对可数交封闭,并不一定是单调类。这里有关键的区别:

  1. 单调类(monotone class):

    • 对于任意的单调增加序列 { A n } \{A_n\} {An}(即 A n ⊆ A n + 1 A_n \subseteq A_{n+1} AnAn+1),其并集 ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n n=1An 必须在该类中。
    • 对于任意的单调减少序列 { A n } \{A_n\} {An}(即 A n ⊇ A n + 1 A_n \supseteq A_{n+1} AnAn+1),其交集 ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n n=1An 必须在该类中。
  2. 可数并封闭和可数交封闭

    • 如果一个集合类对所有可数并封闭(即若 { A n } \{A_n\} {An} 是该类中的任意集合的序列,则 ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n n=1An 也在该类中),并且对所有可数交封闭(即若 { A n } \{A_n\} {An} 是该类中的任意集合的序列,则 ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n n=1An 也在该类中),那么这个集合类被称为σ-代数

    • 对于单调类,我们只需要它对单调增加和单调减少序列的并集和交集封闭,不要求它对任意可数序列的并集和交集封闭。

示例与对比

  • 单调类

    • 例如开区间的集合类在实数轴上,不是σ-代数,但它是一个单调类,因为它对单调增加和单调减少序列的并集和交集是封闭的。
  • σ-代数

    • 例如所有开区间的集合类的σ-代数是所有Borel集合。这个σ-代数不仅对可数并和交封闭,也包括了更多的集合,不只是开区间。

因此,一个集合类对所有可数并和交封闭的性质是σ-代数的特征,而单调类的定义不要求对所有可数序列的并集和交集封闭。

问题2

σ-代数一定是单调类?

是的,σ-代数(σ-algebra)一定是单调类(monotone class)。

理由

  1. σ-代数的定义

    • 一个集合类 F \mathcal{F} F 是σ-代数,如果它对可数并和可数交封闭。这意味着对于任意的可数序列 { A n } \{A_n\} {An} 中的集合, ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n n=1An ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n n=1An 都在 F \mathcal{F} F 中。
  2. 单调类的定义

    • 一个集合类 M \mathcal{M} M 是单调类,如果它对单调增加序列的并集和单调减少序列的交集封闭。即,对于任意的单调增加序列 { A n } \{A_n\} {An}(即 A n ⊆ A n + 1 A_n \subseteq A_{n+1} AnAn+1), ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n n=1An M \mathcal{M} M 中;对于任意的单调减少序列 { A n } \{A_n\} {An}(即 A n ⊇ A n + 1 A_n \supseteq A_{n+1} AnAn+1), ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n n=1An M \mathcal{M} M 中。

为什么σ-代数是单调类

  • 由于σ-代数对所有可数并和交封闭,它特别地也对单调增加序列的并集和单调减少序列的交集封闭。因此,σ-代数自动满足单调类的条件。

小结

所以,σ-代数不仅是单调类,还是一种比单调类更强的结构,因为它对所有可数序列的并集和交集封闭,而单调类只要求对特定类型的序列封闭。

问题3

σ-代数 中会不会所有的序列都不是 不增、不降的序列,会不会全是增降无序的序列,从而认为是非单调类?

不,σ-代数中的集合类不仅包含增序列和降序列的并集和交集,也包含其他类型的集合。σ-代数的定义是对所有可数并和交封闭,因此它不仅限于单调类的情况。

关键点

  1. σ-代数的封闭性

    • σ-代数对所有可数的并集和交集封闭。这包括增序列的并集、降序列的交集,以及其他形式的可数序列。
  2. 单调类的封闭性

    • 单调类仅对单调增加序列的并集和单调减少序列的交集封闭。

对比与关系

  • σ-代数的封闭性:σ-代数对所有可数序列的并集和交集封闭,涵盖了增序列和降序列,但也包括其他可能的情况,比如非单调序列的并集和交集。
  • 单调类的封闭性:单调类对单调增加和单调减少序列的并集和交集封闭,但对其他类型的序列(例如任意的可数序列)可能不是封闭的。

小结

σ-代数包含所有类型的可数序列的并集和交集,因此它总是单调类。但σ-代数的性质更强,因为它对所有可数序列封闭,而单调类仅对特定类型的序列封闭。因此,σ-代数不仅是单调类,而且是更广泛的集合类,能够处理更多种类的序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值