一种理解
在一个集类中,包含了各种各样的集序列,如果对其中的不增序列交封闭、对不降序列并封闭,那么它就是单调类。
如果这个集类,对所有可数序列的并集封闭、交集封闭,不限于只是对不增序列交封闭、对不降序列并封闭,那么就是比单调类更强的一种类,比如σ-代数。
σ-代数一定是单调类,指的是σ-代数中涵盖了不增序列、不降序列以及其它序列,但是它对不增序列交封闭、对不降序列并封闭,因此它是单调类。也许σ-代数中还含有一些“增降无序”的其他序列,它们不属于“单调类”,但我们对单调类的讨论的范围仅限不增序列和不降序列。
问题1
如果集类对可数并封闭,对可数交封闭,那么就是单调类?
不完全准确。一个集合类如果对可数并封闭,对可数交封闭,并不一定是单调类。这里有关键的区别:
-
单调类(monotone class):
- 对于任意的单调增加序列 { A n } \{A_n\} {An}(即 A n ⊆ A n + 1 A_n \subseteq A_{n+1} An⊆An+1),其并集 ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n ⋃n=1∞An 必须在该类中。
- 对于任意的单调减少序列 { A n } \{A_n\} {An}(即 A n ⊇ A n + 1 A_n \supseteq A_{n+1} An⊇An+1),其交集 ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n ⋂n=1∞An 必须在该类中。
-
可数并封闭和可数交封闭:
-
如果一个集合类对所有可数并封闭(即若 { A n } \{A_n\} {An} 是该类中的任意集合的序列,则 ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n ⋃n=1∞An 也在该类中),并且对所有可数交封闭(即若 { A n } \{A_n\} {An} 是该类中的任意集合的序列,则 ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n ⋂n=1∞An 也在该类中),那么这个集合类被称为σ-代数。
-
对于单调类,我们只需要它对单调增加和单调减少序列的并集和交集封闭,不要求它对任意可数序列的并集和交集封闭。
-
示例与对比
-
单调类:
- 例如开区间的集合类在实数轴上,不是σ-代数,但它是一个单调类,因为它对单调增加和单调减少序列的并集和交集是封闭的。
-
σ-代数:
- 例如所有开区间的集合类的σ-代数是所有Borel集合。这个σ-代数不仅对可数并和交封闭,也包括了更多的集合,不只是开区间。
因此,一个集合类对所有可数并和交封闭的性质是σ-代数的特征,而单调类的定义不要求对所有可数序列的并集和交集封闭。
问题2
σ-代数一定是单调类?
是的,σ-代数(σ-algebra)一定是单调类(monotone class)。
理由
-
σ-代数的定义:
- 一个集合类 F \mathcal{F} F 是σ-代数,如果它对可数并和可数交封闭。这意味着对于任意的可数序列 { A n } \{A_n\} {An} 中的集合, ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n ⋃n=1∞An 和 ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n ⋂n=1∞An 都在 F \mathcal{F} F 中。
-
单调类的定义:
- 一个集合类 M \mathcal{M} M 是单调类,如果它对单调增加序列的并集和单调减少序列的交集封闭。即,对于任意的单调增加序列 { A n } \{A_n\} {An}(即 A n ⊆ A n + 1 A_n \subseteq A_{n+1} An⊆An+1), ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n ⋃n=1∞An 在 M \mathcal{M} M 中;对于任意的单调减少序列 { A n } \{A_n\} {An}(即 A n ⊇ A n + 1 A_n \supseteq A_{n+1} An⊇An+1), ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n ⋂n=1∞An 在 M \mathcal{M} M 中。
为什么σ-代数是单调类
- 由于σ-代数对所有可数并和交封闭,它特别地也对单调增加序列的并集和单调减少序列的交集封闭。因此,σ-代数自动满足单调类的条件。
小结
所以,σ-代数不仅是单调类,还是一种比单调类更强的结构,因为它对所有可数序列的并集和交集封闭,而单调类只要求对特定类型的序列封闭。
问题3
σ-代数 中会不会所有的序列都不是 不增、不降的序列,会不会全是增降无序的序列,从而认为是非单调类?
不,σ-代数中的集合类不仅包含增序列和降序列的并集和交集,也包含其他类型的集合。σ-代数的定义是对所有可数并和交封闭,因此它不仅限于单调类的情况。
关键点
-
σ-代数的封闭性:
- σ-代数对所有可数的并集和交集封闭。这包括增序列的并集、降序列的交集,以及其他形式的可数序列。
-
单调类的封闭性:
- 单调类仅对单调增加序列的并集和单调减少序列的交集封闭。
对比与关系
- σ-代数的封闭性:σ-代数对所有可数序列的并集和交集封闭,涵盖了增序列和降序列,但也包括其他可能的情况,比如非单调序列的并集和交集。
- 单调类的封闭性:单调类对单调增加和单调减少序列的并集和交集封闭,但对其他类型的序列(例如任意的可数序列)可能不是封闭的。
小结
σ-代数包含所有类型的可数序列的并集和交集,因此它总是单调类。但σ-代数的性质更强,因为它对所有可数序列封闭,而单调类仅对特定类型的序列封闭。因此,σ-代数不仅是单调类,而且是更广泛的集合类,能够处理更多种类的序列。