这是因为集代数(algebra of sets)生成的最小σ-代数和最小单调类在本质上是相同的。我们可以考虑以下几点:
-
集代数生成的最小 σ-代数:
给定一个集代数 A \mathcal{A} A,其最小 σ-代数是包含 A \mathcal{A} A 的所有 σ-代数中的最小集合类。记作 σ ( A ) \sigma(\mathcal{A}) σ(A)。σ ( A ) = { 所有可数并和交集的集合类,包含 A } \sigma(\mathcal{A}) = \{ \text{所有可数并和交集的集合类,包含 } \mathcal{A} \} σ(A)={所有可数并和交集的集合类,包含 A}
-
集代数生成的最小单调类:
同样地,给定一个集代数 A \mathcal{A} A,其最小单调类是包含 A \mathcal{A} A 的所有单调类中的最小集合类。记作 M ( A ) \mathcal{M}(\mathcal{A}) M(A)。M ( A ) = { 所有单调类,包含 A } \mathcal{M}(\mathcal{A}) = \{ \text{所有单调类,包含 } \mathcal{A} \} M(A)={所有单调类,包含 A}
-
最小 σ-代数和最小单调类相等的理由:
-
从集代数到单调类:
集代数 A \mathcal{A} A 本身是一个单调类,因为它对有限并和交集封闭。通过包含 A \mathcal{A} A,我们可以生成一个更大的单调类,这个单调类实际上就是集代数 A \mathcal{A} A 扩展而成的。 -
从单调类到 σ-代数:
最小单调类 M ( A ) \mathcal{M}(\mathcal{A}) M(A) 包含 A \mathcal{A} A 并且对单调增加和单调减少序列的并集和交集封闭。由于 σ-代数对所有可数并和交集封闭,它也包含了所有的单调类(因为单调类的定义对特定的单调序列封闭)。因此,最小单调类生成的 σ-代数实际上是包含了最小 σ-代数的所有集合。
-
总结来说:
σ ( A ) = M ( A ) \sigma(\mathcal{A}) = \mathcal{M}(\mathcal{A}) σ(A)=M(A)