集代数生成的最小σ代数等于集代数生成的最小单调类

这是因为集代数(algebra of sets)生成的最小σ-代数和最小单调类在本质上是相同的。我们可以考虑以下几点:

  1. 集代数生成的最小 σ-代数
    给定一个集代数 A \mathcal{A} A,其最小 σ-代数是包含 A \mathcal{A} A 的所有 σ-代数中的最小集合类。记作 σ ( A ) \sigma(\mathcal{A}) σ(A)

    σ ( A ) = { 所有可数并和交集的集合类,包含  A } \sigma(\mathcal{A}) = \{ \text{所有可数并和交集的集合类,包含 } \mathcal{A} \} σ(A)={所有可数并和交集的集合类,包含 A}

  2. 集代数生成的最小单调类
    同样地,给定一个集代数 A \mathcal{A} A,其最小单调类是包含 A \mathcal{A} A 的所有单调类中的最小集合类。记作 M ( A ) \mathcal{M}(\mathcal{A}) M(A)

    M ( A ) = { 所有单调类,包含  A } \mathcal{M}(\mathcal{A}) = \{ \text{所有单调类,包含 } \mathcal{A} \} M(A)={所有单调类,包含 A}

  3. 最小 σ-代数和最小单调类相等的理由

    • 从集代数到单调类
      集代数 A \mathcal{A} A 本身是一个单调类,因为它对有限并和交集封闭。通过包含 A \mathcal{A} A,我们可以生成一个更大的单调类,这个单调类实际上就是集代数 A \mathcal{A} A 扩展而成的。

    • 从单调类到 σ-代数
      最小单调类 M ( A ) \mathcal{M}(\mathcal{A}) M(A) 包含 A \mathcal{A} A 并且对单调增加和单调减少序列的并集和交集封闭。由于 σ-代数对所有可数并和交集封闭,它也包含了所有的单调类(因为单调类的定义对特定的单调序列封闭)。因此,最小单调类生成的 σ-代数实际上是包含了最小 σ-代数的所有集合。

总结来说:

σ ( A ) = M ( A ) \sigma(\mathcal{A}) = \mathcal{M}(\mathcal{A}) σ(A)=M(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山莫衣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值