等价向量组的秩相等

本文探讨了向量组线性表示的性质,阐述了若向量组A能由向量组B线性表示,则r(A)≤r(B),反之亦然。等价向量组的秩相等这一结论,并通过极大无关组和线性表出的关系进行了证明。重点在于理解向量组秩的概念及其在向量表示中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,我们要知道这样一条定理:
向量组A(α1,α2,…,αm)若能由向量组B(β1,β2,…,βn)线性表出,那么r(A)≤r(B)
(这里m、n是任意的,表示任意两个向量组)
于是:
若向量组A能由向量组B线性表示,那么r(A)≤r(B);
若向量组B能由向量组A线性表示,那么r(B)≤r(A);
因此,
若向量组A与向量组B能够互相表示 等价于 r(A)=r(B)。
也即,等价向量组的秩相等。

附:关于已知的定理的证明,这里简单说明一下,我们知道:
(1)如果向量组A可以由向量组B线性表示,而向量组A又线性无关,那么A中向量的个数≤B中向量的个数。
(2)向量组的线性表出,等价于他们极大无关组的线性表出(向量组和和极大无关组是等价的,等价向量组具有传递性)。
因此:
也就是说,向量组A可以由向量组B线性表出,那么A的极大无关组就可以由B的极大无关组线性表出,则由(1)知,向量组A的极大无关组中向量的个数≤向量组B的极大无关组中向量的个数,即r(A)≤r(B)。

### 等价矩阵的特征值和特征向量的关系 两个矩阵 \(A\) 和 \(B\) 称为等价,如果存在可逆矩阵 \(P\) 和 \(Q\) 使得 \(PAQ=B\)[^2]。然而,在讨论特征值和特征向量时,通常关注的是相似矩阵而非一般意义上的等价矩阵。 对于相似矩阵而言,设\(A\)和\(B\)是两个相似矩阵,则存在一个可逆矩阵\(P\)满足\[B=P^{-1}AP\][^5]。此时,\(A\)和\(B\)具有相同的特征多项式,因此拥有完全相同的一组特征值(包括重根)。这是因为特征值是由矩阵的迹以及行列式的值决定的,而这两个属性在相似变换下保持不变[^3]。 关于特征向量,需要注意的是虽然相似矩阵共享同一套特征值,但是它们各自的特征向量并不一定相等。具体来说,假设\(v\)是矩阵\(A\)对应于某个特定特征值\(\lambda\)的一个特征向量,那么通过上述相似关系可知,\(P^{-1}v\)将是矩阵\(B\)同样针对该特征值\(\lambda\)下的一个特征向量。这表明尽管原始空间中的特征向量可能发生变化,但在新的基底(由\(P\)所定义的空间转换)之下,这些经过调整后的向量仍然保留着作为相应特征值之特征向量的身份。 ```python import numpy as np # 定义一个随机矩阵A及其对应的可逆矩阵P用于构建相似矩阵B np.random.seed(0) # 设置种子以便结果重现 A = np.random.rand(3, 3) P = np.linalg.inv(np.random.rand(3, 3)) # 计算相似矩阵B B = P @ A @ np.linalg.inv(P) print("Matrix A:\n", A) print("\nSimilar Matrix B (via transformation by P):\n", B) eigenvalues_A, eigenvectors_A = np.linalg.eig(A) eigenvalues_B, eigenvectors_B = np.linalg.eig(B) print("\nEigenvalues of A:", eigenvalues_A) print("Eigenvalues of B:", eigenvalues_B) transformed_eigenvector_example = P @ eigenvectors_A[:, 0] print("\nTransformed Eigenvector Example from A to match space of B:") print(transformed_eigenvector_example / transformed_eigenvector_example[0]) # 归一化显示方便对比 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值